Exclusive:Development of underwater archaeological exploration technology

Research and application progress of underwater archaeological vehicles

  • GUO Wei ,
  • XU Gaofei ,
  • WANG Minjian ,
  • LI Bin ,
  • GAO Sen ,
  • YUAN Bo
Expand
  • 1. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
    2. Shanghai Aircraft Design & Research Institute, Shanghai 201210, China;
    3. National Centre for Archaeology, Beijing 100013, China

Received date: 2023-12-05

  Revised date: 2024-03-10

  Online published: 2024-08-06

Abstract

With precious historical value, underwater cultural relics play an important role in safeguarding national maritime rights and interests. As the main tool for detecting underwater cultural relics, underwater archaeological vehicle is widely applied in underwater archaeological work. Based on the specifics of underwater archaeological work, typical operation process and existing work of underwater archaeology, the main characteristics of underwater archaeology work are summarized. Starting from general-purpose underwater robot, the main features of remotely operated underwater vehicle, manned submersibles and autonomous underwater vehicle and their typical applications in underwater archaeology are categorized, and the specifics of special robots for underwater archaeology in China and other countries are introduced in detail. Finally, the development trend of underwater archaeology vehicles is analysed from aspects such as operation mode, operation function and intelligence level, providing reference for the subsequent development of underwater archaeology vehicles.

Cite this article

GUO Wei , XU Gaofei , WANG Minjian , LI Bin , GAO Sen , YUAN Bo . Research and application progress of underwater archaeological vehicles[J]. Science & Technology Review, 2024 , 42(14) : 61 -72 . DOI: 10.3981/j.issn.1000-7857.2023.07.01101

References

[1] 吴春明. 从沉船考古看海洋全球化在环中国海的兴起[J]. 故宫博物院院刊, 2020(5): 43-70, 110.
[2] 魏旭. 浅谈水下文化遗产调查[J]. 常州文博论丛, 2017(1): 125-127.
[3] 蒂斯·马尔拉维尔德, 乌吕克·格林, 芭芭拉·埃格. 水下文化遗产行动手册: 联合国教科文组织2001年《保护水下文化遗产公约》附件之指南[M]. 国家文物局水下文化遗产保护中心, 译. 北京: 文物出版社, 2013: 13-46.
[4] Bjørnø L. Underwater acoustic measurements and their applications[M]. New York: Elsevier, 2017: 889-947.
[5] Arnold J B III, Oertling T J, Hall A W. The Denbigh Project: Initial observations on a Civil War blockade-runner and its wreck-site[J]. International Journal of Nautical Archaeology, 1999, 28(2): 126-144.
[6] Boshoff J, Barstad J F, Ruppe C V. International handbook of underwater archaeology[J]. The South African Archaeological Bulletin, 2003, 58(177): 38.
[7] Ballard R D, McCann A M, Yoerger D, et al. The discovery of ancient history in the deep sea using advanced deep submergence technology[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(9): 1591-1620.
[8] Adams J. Alchemy or science? Compromising archaeology in the deep sea[J]. Journal of Maritime Archaeology, 2007, 2(1): 48-56.
[9] Jasinski M E, Sortland B, Soreide F. Applications of remotely controlled equipment in Norwegian marine archaeology[C]//Proceedings of ‘Challenges of Our Changing Global Environment'. Conference Proceedings. Oceans' 95 MTS/IEEE. Piscataway, NJ: IEEE, 1995: 566-572.
[10] Mearns D L. Search for the bulk carrier Derbyshire: Unlocking the mystery of bulk carrier shipping disasters [C]//Proceedings of SUT Man-Made Objects on the Seafloor 1995. London, UK: SUT, 1995: 95-103.
[11] Delaporta K, Jasinski M E, Soreide F. The greek-norwegian deep-water archaeological survey[J]. International Journal of Nautical Archaeology, 2006, 35(1): 79-87.
[12] Coleman D F, Ballard R D, Gregory T. Marine archaeological exploration of the Black Sea[C]//Proceedings of Oceans 2003. San Diego, CA, USA: IEEE, 2003: 1287-1291.
[13] Jones T N. The investigation and excavation of a deepwater shipwreck in the gulf of Mexico[J]. Marine Technology Society Journal, 2002, 36(3): 51-54.
[14] Soreide F, Jasinski M E. Ormen Lange: Investigation and excavation of a shipwreck in 170m depth[C]//Proceedings of Oceans 2005 Washington DC, USA: IEEE, 2005: 2334-2338.
[15] Ford B, Borgens A, Hitchcock P. The ‘mardi gras' shipwreck: Results of a deep-water excavation, gulf of Mexico, USA[J]. International Journal of Nautical Archaeology, 2010, 39(1): 76-98.
[16] Church R A, Warren D J. The 2004 deep wrecks project: Analysis of world war II era shipwrecks in the gulf of Mexico[J]. International Journal of Historical Archaeology, 2008, 12(2): 82-102.
[17] Garrison E G. A diachronic study of some historical and natural factors linked to shipwreck patterns in the northern gulf of Mexico[M]. USA: Springer US, 1998: 303-316.
[18] Bellingham J G. New oceanographic uses of autonomous underwater vehicles[J]. Marine Technology Society Journal, 1997, 31(3): 34-47.
[19] Søreide F. Cost-effective deep water archaeology: Preliminary investigations in Trondheim Harbour[J]. International Journal of Nautical Archaeology, 2000, 29(2): 284-293.
[20] Momma H, Iwase R, Kawaguchi K, et al. The VENUS project-instrumentation and underwater work system[C]// Proceedings of 1998 International Symposium on Underwater Technology. Piscataway, NJ: IEEE, 1998: 437-441.
[21] Meo G B. The HMI of an experimental underwater vehicle for archeological survey, inspection and remote touring of important submarine sites and finds[C]//Proceedings of Oceans '04 MTS/IEEE Techno-Ocean '04(IEEE Cat. No. 04CH37600). Piscataway, NJ: IEEE, 2004: 818-821.
[22] Soreide F, Jasinski M E, Sperre T O. Unique new technology enables archaeology in the deep sea[J]. Sea Technology, 2006, 47(10): 10-13.
[23] Nornes S M, Ludvigsen M, Ødegard Ø, et al. Underwater photogrammetric mapping of an intact standing steel wreck with ROV[J]. IFAC-Papers On Line, 2015, 48(2): 206-211.
[24] Pedersen O P, Gaardsted F, Lågstad P, et al. On the use of the HUGIN 1000 HUS Autonomous Underwater Vehicle for high resolution zooplankton measurements[J]. Journal of Operational Oceanography, 2010, 3(1): 17-25.
[25] Dobson N C. Developmental deep-water archaeology: A preliminary report on the investigation and excavation of the 19th-century side-wheel steamer SS republic, lost in a storm off savannah in 1865[C]//Proceedings of Oceans 2005 MTS/IEEE. Piscataway, NJ: IEEE, 2005: 1761-1769.
[26] Foley B P, Dellaporta K, Sakellariou D, et al. The 2005 Chios ancient shipwreck survey: New methods for underwater archaeology[J]. Hesperia the Journal of the American School of Classical Studies at Athens, 2009, 78(2): 269-305.
[27] Khalil E, Mustafa M. Underwater archaeology in Egypt [M]. Boston, MA: Springer US, 2002: 519-534.
[28] Ballard R D. The MEDEA/JASON remotely operated vehicle system[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(8): 1673-1687.
[29] Bingham B, Mindell D, Wilcox T, et al. Integrating precision relative positioning into JASON/MEDEA ROV operations[J]. Marine Technology Society Journal, 2006, 40(1): 87-96.
[30] Michel J L, Ballard R D. The RMS Titanic 1985 discovery expedition[C]//Proceedings of Oceans'94. Piscataway, NJ: IEEE, 1994: 132-137.
[31] Viola T. ROV Argus[EB/OL]. (2016-12-16) [2024-01-10]. https://nautiluslive.org/tech/rov-argus.
[32] Woods Hole Oceanographic Institution. ROV Jason/Medea [EB/OL]. (2019-01-01) [2024-01-10]. https://www.whoi.edu/what-we-do/explore/underwater-vehicles/ndsfjason.
[33] Pacheco-Ruiz R, Adams J, Pedrotti F, et al. Deep sea archaeological survey in the Black Sea-Robotic documentation of 2, 500 years of human seafaring[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 152: 103087.
[34] Bass G F. The Asherah: A submarine for archaeology[J]. Archaeology, 1965, 18(1): 7-14.
[35] 李勇航, 温明明, 陈宗恒, 等. 水下考古地球物理技术进展、挑战及建议[J]. 海洋地质与第四纪地质, 2023, 43(6): 191-201.
[36] Ballard R D, Stager L E, Master D, et al. Iron age shipwrecks in deep water off ashkelon, Israel[J]. American Journal of Archaeology, 2002, 106(2): 151-168.
[37] Gracias N, Ridao P, Garcia R, et al. Mapping the Moon: Using a lightweight AUV to survey the site of the 17th century ship ‘La Lune'[C]//Proceedings of MTS/IEEE Oceans-Bergen. Piscataway, NJ: IEEE, 2013: 1-8.
[38] Khatib O, Yeh X, Brantner G, et al. Ocean one: A robotic avatar for oceanic discovery[J]. IEEE Robotics & Automation Magazine, 2016, 23(4): 20-29.
[39] 王行舟. 美国最小的核潜艇: NR-1号[EB/OL]. (2018-09-05)[2024-01-10]. https://zhuanlan.zhihu.com/p/43844839.
[40] IFREMER. Nautile[EB/OL]. (2016-07-22)[2024-01-10]. https://www.flotteoceanographique.fr/var/storage/images/_aliases/c_slideshow-carousel_embed_page/medias-ifremer/medias-flotte/sous-marins-visuels/mediasnautile/campagne-ghass22/1898876-1-fre-FR/Campagne-GHASS2.jpg.
[41] David. Remora[EB/OL]. (2015-03-22) [2024-01-10]. https://adml.jimdofree.com/r%C3%A9alisations/sous-marin/remora-2000.
[42] 中国科学院沈阳自动化研究所. 机器人学国家重点实验室研制的控制系统助力“深海勇士”号海试圆满成功[EB/OL]. (2018-01-08)[2024-01-10]. http://rlab.sia.cas.cn/xwxx/kydt/201801/t20180108_393170.html.
[43] Jasinski M E, Søreide F, Kristiansen S. VETIS: A survey tool for marine archaeology[C]//Proceedings of Fourth Underwater Science Symposium 1997. Newcastle upon Tyne, UK: SUT, 1997: 27-33.
[44] 庞博. 水下机器人与考古[J]. 中国海事, 2016, 130(5): 77-78.
[45] Odegaard O T, Pedersen O P. ANCOR II processing and visualization software applied to Barents Sea ADCP and CTD data acquired by the HUGIN 1000 HUS AUV[C]// Proceedings of Oceans 2010 MTS/IEEE SEATTLE. Piscataway, NJ: IEEE, 2010: 1-9.
[46] Ødegård Ø, Hansen R E, Singh H, et al. Archaeological use of Synthetic Aperture Sonar on deepwater wreck sites in Skagerrak[J]. Journal of Archaeological Science, 2018, 89: 1-13.
[47] Singh H, Eustice R, Roman C, et al. The Seabed AUVA platform for high resolution imaging[J]. Unmanned Underwater Vehicle Showcase, 2002, 13: 102-104.
[48] Oceanographic Systems Lab. REMUS 100[EB/OL]. (2004-10-22) [2024-01-10]. https://www2.whoi.edu/site/osl/vehicles/remus-100.
[49] Kongsberg Discovery. HUGIN Autonomous Underwater Vehicle[EB/OL]. (2016-01-22) [2024-01-10]. https:// www.kongsberg.com/discovery/autonomous-and-uncrewed-solutions/hugin.
[50] 新浪. 6000米水下它轻松探宝[EB/OL]. (2006-11-30) [2024-01-10]. https://news.sina.com.cn/o/2006-11-30/074410644961s.shtml.
[51] Ridolfi A, Spaccini D, Fanelli F, et al. An autonomous underwater vehicle and SUNSET to bridge underwater networks composed of multi-vendor modems[J]. Annual Reviews in Control, 2018, 46: 295-303.
[52] Allotta B, Baines S, Bartolini F, et al. Design of a modular Autonomous Underwater Vehicle for archaeological investigations[C]//Proceedings of Oceans 2015 Genova. Piscataway, NJ: IEEE, 2015: 1-5.
[53] Allotta B, Caiti A, Costanzi R, et al. Cooperative navigation of AUVs via acoustic communication networking: Field experience with the Typhoon vehicles[J]. Autonomous Robots, 2016, 40(7): 1229-1244.
[54] Allotta B, Bartolini F, Caiti A, et al. Typhoon at CommsNet13: Experimental experience on AUV navigation and localization[J]. Annual Reviews in Control, 2015, 40: 157-171.
[55] Ødegård Ø, Sørensen A J, Hansen R E, et al. A new method for underwater archaeological surveying using sensors and unmanned platforms[J]. IFAC Papers On Line, 2016, 49(23): 486-493.
[56] Warren D J, Church R A, Eslinger K L. Deepwater archaeology with autonomous underwater vehicle technology[C]//Proceedings of Offshore Technology Conference 2007. Houston, TX, USA: OTC, 2007: 1-12.
[57] Ludvigsen M, Johnsen G, Sørensen A J, et al. Scientific operations combining ROV and AUV in the Trondheim fjord[J]. Marine Technology Society Journal, 2014, 48(2): 59-71.
[58] Allotta B, Costanzi R, Ridolfi A, et al. The ARROWS project: Robotic technologies for underwater archaeology [J]. IOP Conference Series: Materials Science and Engineering, 2018, 364(1): 012088.
[59] Allotta B, Costanzi R, Ridolfi A, et al. The ARROWS project: Adapting and developing robotics technologies for underwater archaeology[J]. IFAC-Papers On Line, 2015, 48(2): 194-199.
[60] Allotta B, Costanzi R, Magrini M, et al. Towards a robust system helping underwater archaeologists through the acquisition of geo-referenced optical and acoustic data[C]//Proceedings of the 10th International Conference on Computer Vision Systems, ICVS 2015. Copenhagen, Denmark: Springer, 2015: 253-262.
[61] Lockheed Martin. A-Size Autonomous Underwater Vehicles[EB/OL]. (2019-04-22) [2024-01-10]. https://www.lockheedmartin.com/en-us/products/a-size-autonomousunderwater-vehicles.html.
[62] Lockheed Martin. U-CAT[EB/OL]. (2015-04-23) [2024-01-10]. http://www.mforum.ru/news/article/111575.htm.
[63] Caiti A, Calabro V, Di Corato F, et al. Thesaurus: AUV teams for archaeological search. Field results on acoustic communication and localization with the Typhoon[C]// Proceedings of 22nd Mediterranean Conference on Control and Automation. Piscataway, NJ: IEEE, 2014: 857-863.
[64] Khatib O. Ocean One Lands on the moon[EB/OL]. (2016-08-17) [2024-01-10]. https://cs.stanford.edu/group/manips/ocean-one.html#media.
[65] Khatib O. Ocean OneK[EB/OL]. (2016-08-17)[2024-01-10]. https://cs.stanford.edu/group/manips/ocean-one-k.html.
[66] Xu G F, Zhou D X, Yuan L B, et al. Vision-based underwater target real-time detection for autonomous underwater vehicle subsea exploration[J]. Frontiers in Marine Science, 2023, 10: 1112310.
[67] Yang Y T, Liang W, Zhou D X, et al. Object detection for underwater cultural artifacts based on deep aggregation network with deformation convolution[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2228.
[68] Xu G F, Guo W, Zhao Y, et al. Online learning based underwater robotic thruster fault detection[J]. Applied Sciences, 2021, 11(8): 3586.
Outlines

/