[1] 吴春明. 从沉船考古看海洋全球化在环中国海的兴起[J]. 故宫博物院院刊, 2020(5): 43-70, 110.
[2] 魏旭. 浅谈水下文化遗产调查[J]. 常州文博论丛, 2017(1): 125-127.
[3] 蒂斯·马尔拉维尔德, 乌吕克·格林, 芭芭拉·埃格. 水下文化遗产行动手册: 联合国教科文组织2001年《保护水下文化遗产公约》附件之指南[M]. 国家文物局水下文化遗产保护中心, 译. 北京: 文物出版社, 2013: 13-46.
[4] Bjørnø L. Underwater acoustic measurements and their applications[M]. New York: Elsevier, 2017: 889-947.
[5] Arnold J B III, Oertling T J, Hall A W. The Denbigh Project: Initial observations on a Civil War blockade-runner and its wreck-site[J]. International Journal of Nautical Archaeology, 1999, 28(2): 126-144.
[6] Boshoff J, Barstad J F, Ruppe C V. International handbook of underwater archaeology[J]. The South African Archaeological Bulletin, 2003, 58(177): 38.
[7] Ballard R D, McCann A M, Yoerger D, et al. The discovery of ancient history in the deep sea using advanced deep submergence technology[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(9): 1591-1620.
[8] Adams J. Alchemy or science? Compromising archaeology in the deep sea[J]. Journal of Maritime Archaeology, 2007, 2(1): 48-56.
[9] Jasinski M E, Sortland B, Soreide F. Applications of remotely controlled equipment in Norwegian marine archaeology[C]//Proceedings of ‘Challenges of Our Changing Global Environment'. Conference Proceedings. Oceans' 95 MTS/IEEE. Piscataway, NJ: IEEE, 1995: 566-572.
[10] Mearns D L. Search for the bulk carrier Derbyshire: Unlocking the mystery of bulk carrier shipping disasters [C]//Proceedings of SUT Man-Made Objects on the Seafloor 1995. London, UK: SUT, 1995: 95-103.
[11] Delaporta K, Jasinski M E, Soreide F. The greek-norwegian deep-water archaeological survey[J]. International Journal of Nautical Archaeology, 2006, 35(1): 79-87.
[12] Coleman D F, Ballard R D, Gregory T. Marine archaeological exploration of the Black Sea[C]//Proceedings of Oceans 2003. San Diego, CA, USA: IEEE, 2003: 1287-1291.
[13] Jones T N. The investigation and excavation of a deepwater shipwreck in the gulf of Mexico[J]. Marine Technology Society Journal, 2002, 36(3): 51-54.
[14] Soreide F, Jasinski M E. Ormen Lange: Investigation and excavation of a shipwreck in 170m depth[C]//Proceedings of Oceans 2005 Washington DC, USA: IEEE, 2005: 2334-2338.
[15] Ford B, Borgens A, Hitchcock P. The ‘mardi gras' shipwreck: Results of a deep-water excavation, gulf of Mexico, USA[J]. International Journal of Nautical Archaeology, 2010, 39(1): 76-98.
[16] Church R A, Warren D J. The 2004 deep wrecks project: Analysis of world war II era shipwrecks in the gulf of Mexico[J]. International Journal of Historical Archaeology, 2008, 12(2): 82-102.
[17] Garrison E G. A diachronic study of some historical and natural factors linked to shipwreck patterns in the northern gulf of Mexico[M]. USA: Springer US, 1998: 303-316.
[18] Bellingham J G. New oceanographic uses of autonomous underwater vehicles[J]. Marine Technology Society Journal, 1997, 31(3): 34-47.
[19] Søreide F. Cost-effective deep water archaeology: Preliminary investigations in Trondheim Harbour[J]. International Journal of Nautical Archaeology, 2000, 29(2): 284-293.
[20] Momma H, Iwase R, Kawaguchi K, et al. The VENUS project-instrumentation and underwater work system[C]// Proceedings of 1998 International Symposium on Underwater Technology. Piscataway, NJ: IEEE, 1998: 437-441.
[21] Meo G B. The HMI of an experimental underwater vehicle for archeological survey, inspection and remote touring of important submarine sites and finds[C]//Proceedings of Oceans '04 MTS/IEEE Techno-Ocean '04(IEEE Cat. No. 04CH37600). Piscataway, NJ: IEEE, 2004: 818-821.
[22] Soreide F, Jasinski M E, Sperre T O. Unique new technology enables archaeology in the deep sea[J]. Sea Technology, 2006, 47(10): 10-13.
[23] Nornes S M, Ludvigsen M, Ødegard Ø, et al. Underwater photogrammetric mapping of an intact standing steel wreck with ROV[J]. IFAC-Papers On Line, 2015, 48(2): 206-211.
[24] Pedersen O P, Gaardsted F, Lågstad P, et al. On the use of the HUGIN 1000 HUS Autonomous Underwater Vehicle for high resolution zooplankton measurements[J]. Journal of Operational Oceanography, 2010, 3(1): 17-25.
[25] Dobson N C. Developmental deep-water archaeology: A preliminary report on the investigation and excavation of the 19th-century side-wheel steamer SS republic, lost in a storm off savannah in 1865[C]//Proceedings of Oceans 2005 MTS/IEEE. Piscataway, NJ: IEEE, 2005: 1761-1769.
[26] Foley B P, Dellaporta K, Sakellariou D, et al. The 2005 Chios ancient shipwreck survey: New methods for underwater archaeology[J]. Hesperia the Journal of the American School of Classical Studies at Athens, 2009, 78(2): 269-305.
[27] Khalil E, Mustafa M. Underwater archaeology in Egypt [M]. Boston, MA: Springer US, 2002: 519-534.
[28] Ballard R D. The MEDEA/JASON remotely operated vehicle system[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(8): 1673-1687.
[29] Bingham B, Mindell D, Wilcox T, et al. Integrating precision relative positioning into JASON/MEDEA ROV operations[J]. Marine Technology Society Journal, 2006, 40(1): 87-96.
[30] Michel J L, Ballard R D. The RMS Titanic 1985 discovery expedition[C]//Proceedings of Oceans'94. Piscataway, NJ: IEEE, 1994: 132-137.
[31] Viola T. ROV Argus[EB/OL]. (2016-12-16) [2024-01-10]. https://nautiluslive.org/tech/rov-argus.
[32] Woods Hole Oceanographic Institution. ROV Jason/Medea [EB/OL]. (2019-01-01) [2024-01-10]. https://www.whoi.edu/what-we-do/explore/underwater-vehicles/ndsfjason.
[33] Pacheco-Ruiz R, Adams J, Pedrotti F, et al. Deep sea archaeological survey in the Black Sea-Robotic documentation of 2, 500 years of human seafaring[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 152: 103087.
[34] Bass G F. The Asherah: A submarine for archaeology[J]. Archaeology, 1965, 18(1): 7-14.
[35] 李勇航, 温明明, 陈宗恒, 等. 水下考古地球物理技术进展、挑战及建议[J]. 海洋地质与第四纪地质, 2023, 43(6): 191-201.
[36] Ballard R D, Stager L E, Master D, et al. Iron age shipwrecks in deep water off ashkelon, Israel[J]. American Journal of Archaeology, 2002, 106(2): 151-168.
[37] Gracias N, Ridao P, Garcia R, et al. Mapping the Moon: Using a lightweight AUV to survey the site of the 17th century ship ‘La Lune'[C]//Proceedings of MTS/IEEE Oceans-Bergen. Piscataway, NJ: IEEE, 2013: 1-8.
[38] Khatib O, Yeh X, Brantner G, et al. Ocean one: A robotic avatar for oceanic discovery[J]. IEEE Robotics & Automation Magazine, 2016, 23(4): 20-29.
[39] 王行舟. 美国最小的核潜艇: NR-1号[EB/OL]. (2018-09-05)[2024-01-10]. https://zhuanlan.zhihu.com/p/43844839.
[40] IFREMER. Nautile[EB/OL]. (2016-07-22)[2024-01-10]. https://www.flotteoceanographique.fr/var/storage/images/_aliases/c_slideshow-carousel_embed_page/medias-ifremer/medias-flotte/sous-marins-visuels/mediasnautile/campagne-ghass22/1898876-1-fre-FR/Campagne-GHASS2.jpg.
[41] David. Remora[EB/OL]. (2015-03-22) [2024-01-10]. https://adml.jimdofree.com/r%C3%A9alisations/sous-marin/remora-2000.
[42] 中国科学院沈阳自动化研究所. 机器人学国家重点实验室研制的控制系统助力“深海勇士”号海试圆满成功[EB/OL]. (2018-01-08)[2024-01-10]. http://rlab.sia.cas.cn/xwxx/kydt/201801/t20180108_393170.html.
[43] Jasinski M E, Søreide F, Kristiansen S. VETIS: A survey tool for marine archaeology[C]//Proceedings of Fourth Underwater Science Symposium 1997. Newcastle upon Tyne, UK: SUT, 1997: 27-33.
[44] 庞博. 水下机器人与考古[J]. 中国海事, 2016, 130(5): 77-78.
[45] Odegaard O T, Pedersen O P. ANCOR II processing and visualization software applied to Barents Sea ADCP and CTD data acquired by the HUGIN 1000 HUS AUV[C]// Proceedings of Oceans 2010 MTS/IEEE SEATTLE. Piscataway, NJ: IEEE, 2010: 1-9.
[46] Ødegård Ø, Hansen R E, Singh H, et al. Archaeological use of Synthetic Aperture Sonar on deepwater wreck sites in Skagerrak[J]. Journal of Archaeological Science, 2018, 89: 1-13.
[47] Singh H, Eustice R, Roman C, et al. The Seabed AUVA platform for high resolution imaging[J]. Unmanned Underwater Vehicle Showcase, 2002, 13: 102-104.
[48] Oceanographic Systems Lab. REMUS 100[EB/OL]. (2004-10-22) [2024-01-10]. https://www2.whoi.edu/site/osl/vehicles/remus-100.
[49] Kongsberg Discovery. HUGIN Autonomous Underwater Vehicle[EB/OL]. (2016-01-22) [2024-01-10]. https:// www.kongsberg.com/discovery/autonomous-and-uncrewed-solutions/hugin.
[50] 新浪. 6000米水下它轻松探宝[EB/OL]. (2006-11-30) [2024-01-10]. https://news.sina.com.cn/o/2006-11-30/074410644961s.shtml.
[51] Ridolfi A, Spaccini D, Fanelli F, et al. An autonomous underwater vehicle and SUNSET to bridge underwater networks composed of multi-vendor modems[J]. Annual Reviews in Control, 2018, 46: 295-303.
[52] Allotta B, Baines S, Bartolini F, et al. Design of a modular Autonomous Underwater Vehicle for archaeological investigations[C]//Proceedings of Oceans 2015 Genova. Piscataway, NJ: IEEE, 2015: 1-5.
[53] Allotta B, Caiti A, Costanzi R, et al. Cooperative navigation of AUVs via acoustic communication networking: Field experience with the Typhoon vehicles[J]. Autonomous Robots, 2016, 40(7): 1229-1244.
[54] Allotta B, Bartolini F, Caiti A, et al. Typhoon at CommsNet13: Experimental experience on AUV navigation and localization[J]. Annual Reviews in Control, 2015, 40: 157-171.
[55] Ødegård Ø, Sørensen A J, Hansen R E, et al. A new method for underwater archaeological surveying using sensors and unmanned platforms[J]. IFAC Papers On Line, 2016, 49(23): 486-493.
[56] Warren D J, Church R A, Eslinger K L. Deepwater archaeology with autonomous underwater vehicle technology[C]//Proceedings of Offshore Technology Conference 2007. Houston, TX, USA: OTC, 2007: 1-12.
[57] Ludvigsen M, Johnsen G, Sørensen A J, et al. Scientific operations combining ROV and AUV in the Trondheim fjord[J]. Marine Technology Society Journal, 2014, 48(2): 59-71.
[58] Allotta B, Costanzi R, Ridolfi A, et al. The ARROWS project: Robotic technologies for underwater archaeology [J]. IOP Conference Series: Materials Science and Engineering, 2018, 364(1): 012088.
[59] Allotta B, Costanzi R, Ridolfi A, et al. The ARROWS project: Adapting and developing robotics technologies for underwater archaeology[J]. IFAC-Papers On Line, 2015, 48(2): 194-199.
[60] Allotta B, Costanzi R, Magrini M, et al. Towards a robust system helping underwater archaeologists through the acquisition of geo-referenced optical and acoustic data[C]//Proceedings of the 10th International Conference on Computer Vision Systems, ICVS 2015. Copenhagen, Denmark: Springer, 2015: 253-262.
[61] Lockheed Martin. A-Size Autonomous Underwater Vehicles[EB/OL]. (2019-04-22) [2024-01-10]. https://www.lockheedmartin.com/en-us/products/a-size-autonomousunderwater-vehicles.html.
[62] Lockheed Martin. U-CAT[EB/OL]. (2015-04-23) [2024-01-10]. http://www.mforum.ru/news/article/111575.htm.
[63] Caiti A, Calabro V, Di Corato F, et al. Thesaurus: AUV teams for archaeological search. Field results on acoustic communication and localization with the Typhoon[C]// Proceedings of 22nd Mediterranean Conference on Control and Automation. Piscataway, NJ: IEEE, 2014: 857-863.
[64] Khatib O. Ocean One Lands on the moon[EB/OL]. (2016-08-17) [2024-01-10]. https://cs.stanford.edu/group/manips/ocean-one.html#media.
[65] Khatib O. Ocean OneK[EB/OL]. (2016-08-17)[2024-01-10]. https://cs.stanford.edu/group/manips/ocean-one-k.html.
[66] Xu G F, Zhou D X, Yuan L B, et al. Vision-based underwater target real-time detection for autonomous underwater vehicle subsea exploration[J]. Frontiers in Marine Science, 2023, 10: 1112310.
[67] Yang Y T, Liang W, Zhou D X, et al. Object detection for underwater cultural artifacts based on deep aggregation network with deformation convolution[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2228.
[68] Xu G F, Guo W, Zhao Y, et al. Online learning based underwater robotic thruster fault detection[J]. Applied Sciences, 2021, 11(8): 3586.