On the study of life phenomena and laws in extreme extraterrestrial analogue environments

Expand
  • 1. State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China

    2. School of Management, Hefei University of Technology, Hefei 230009, China

    3. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China

Received date: 2024-04-12

  Revised date: 2024-06-11

  Online published: 2024-08-02

Abstract

Searching for extraterrestrial life and achieving long-term extraterrestrial survival are fundamental philosophical question and technical challenges to be addressed by humankind. Life on Earth, especially in extreme environments, provides a unique analog for the study of extraterrestrial life. There are many natural extreme environments on Earth that resemble conditions on exoplanets. By studying life in similar environments, we can uncover the mechanisms of adaptation and survival strategies, deepen our understanding of the essence and boundaries of life, expand the category of habitable planets, and enrich our knowledge of human adaptation and survival limits. Focusing on the life survival strategies in the extreme extraterrestrial analogue environments such as extraterrestrial ocean analogues, Mars analogues, thoughts on core scientific questions, scientific goals and important research directions are presented. It is suggested that through the interdisciplinary intersection of life science, earth science, marine science and astrobiology, investigate the diversity of microorganisms in extraterrestrial extreme environments and the multi-level environmental adaptation mechanisms at the molecular, metabolic, cellular, and community levels; explore the metabolic patterns and survival strategies of the organism in extreme environments; develop a number of key generic technologies and platforms and promote the change of research paradigm in related fields based on big data and artificial intelligence. The study of survival strategies in extreme environment benefit to support national human spaceflight and deep space exploration missions, and provide fundamental and forward-looking scientific and technological reserves for the detection of extraterrestrial life and long-term extraterrestrial survival.

Cite this article

LI Yinghui, HE Guangjun, DING Shuai, YANG Chao .

On the study of life phenomena and laws in extreme extraterrestrial analogue environments[J]. Science & Technology Review, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2022.04.00378

References

[1]      Wu Y. China's deep space exploration[J]. Aerospace China, 2023, 24(1): 3-9.

[2]      林仁红, 丁洁, 林志伟, 等. 2022年全球深空探测领域发展综述[J]. 国际太空, 2023(3): 26-30.

[3]      白青江, 时蓬, 宋婷婷, 等. 2023年空间科学与深空探测热点回眸[J]. 科技导报, 2024, 42(1): 87-98.

[4]      顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049.

[5]      吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627.

[6]      周建平, 吴季. 统筹空间科学、空间技术、空间应用协调发展的思考[J]. 中国工程科学, 2023, 25(2): 59-66.

[7]      王赤. 空间科学突破的前瞻和中国的贡献[J]. 中国科学院院刊, 2022, 37(8): 1050-1065.

[8]      Joseph Seckbach H S-L. Extremophiles as astrobiological models[M]. Beverly MA: Scrivener Publishing, 2020.

[9]      杨孟飞, 郑燕红, 倪彦硕, 等. 太阳系内行星探测活动进展与展望[J]. 中国空间科学技术, 2023, 43(5): 1-12.

[10]     张荣桥, 耿言, 孙泽洲, 等. 天问一号任务的技术创新[J]. 航空学报, 2022, 43(3): 9-15.

[11]     Ehlmann B L, Mustard J F, Murchie S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7371): 53-60.

[12]     Mahaffy P R, Webster C R, Atreya S K, et al. Abundance and isotopic composition of gases in the martian atmosphere from the curiosity rover[J]. Science, 2013, 341(6143): 263-266.

[13]     Squyres S W, Grotzinger J P, Arvidson R E, et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars[J]. Science, 2004, 306(5702): 1709-1714.

[14]     Martin-Torres F J, Zorzano M-P, Valentin-Serrano P, et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience, 2015, 8(5): 357-361.

[15]     Dundas C M, Bramson A M, Ojha L, et al. Exposed subsurface ice sheets in the Martian mid-latitudes[J]. Science, 2018, 359(6372): 199-201.

[16]     Eigenbrode J L, Summons R E, Steele A, et al. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars[J]. Science, 2018, 360(6393): 1096-1100.

[17]     Webster C R, Mahaffy P R, Atreya S K, et al. Background levels of methane in Mars' atmosphere show strong seasonal variations[J]. Science, 2018, 360(6393): 1093-1096.

[18]     Squyres S W, Arvidson R E, Ruff S, et al. Detection of silica-rich deposits on Mars[J]. Science, 2008, 320(5879): 1063-1067.

[19]     赵玉芬, 刘艳, 黄碧玲, 等. 火星生命探测中一种潜在的生物标志物磷酸盐[J]. 空间科学学报, 2021, 41(1): 129-132.

[20]     Hendrix A R, Hurford T A, Barge L M, et al. The NASA roadmap to ocean worlds[J]. Astrobiology, 2019, 19(1): 1-27.

[21]     Cockell C S, Bush T, Bryce C, et al. Habitability: A review[J]. Astrobiology, 2016, 16(1): 89-117.

[22]     Waite J H, Combi M R, Ip W H, et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure[J]. Science, 2006, 311(5766): 1419-1422.

[23]     Postberg F, Schmidt J, Hillier J, et al. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus[J]. Nature, 2011, 474(7353): 620-622.

[24]     Hsu H-W, Postberg F, Sekine Y, et al. Ongoing hydrothermal activities within Enceladus[J]. Nature, 2015, 519(7542): 207-210.

[25]     Postberg F, Khawaja N, Abel B, et al. Macromolecular organic compounds from the depths of Enceladus[J]. Nature, 2018, 558(7711): 564-568.

[26]     Deamer D, Damer B. Can life begin on enceladus? A perspective from hydrothermal chemistry[J]. Astrobiology, 2017, 17(9): 834-839.

[27]     Sekine Y, Shibuya T, Postberg F, et al. High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus[J]. Nature Communications, 2015, 6: 8604.

[28]     Russell M J, Murray A E, Hand K P. The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: The example of Europa[J]. Astrobiology, 2017, 17(12): 1265-1273.

[29]     Waite J H, Niemann H, Yelle R V, et al. Ion Neutral Mass Spectrometer results from the first flyby of Titan[J]. Science, 2005, 308(5724): 982-986.

[30]     Stevenson J, Lunine J, Clancy P. Membrane alternatives in worlds without oxygen: Creation of an azotosome[J]. Science Advances, 2015, 1(1): e1400067.

[31]     国家自然科学基金委员会,中国科学院. 极端地质环境微生物学[M]. 北京: 科学出版社, 2022.

[32]     林巍. 临近空间生物研究及其天体生物学意义[J]. 科学通报, 2020, 65(14): 1297-1304.

[33]     Martins Z, Cottin H, Kotler J M, et al. Earth as a tool for astrobiology:A European perspective[J]. Space Science Reviews, 2017, 209(1-4): 43-81.

[34]     Rothschild L J, Mancinelli R L. Life in extreme environments[J]. Nature, 2001, 409(6823): 1092-1101.

[35]     Shu W-S, Huang L-N. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20(4): 219-235.

[36]     Junge K, Eicken H, Deming J W. Bacterial activity at -2 to -20℃ in Arctic wintertime sea ice[J]. Appl Environ Microbiol, 2004, 70(1): 550-557.

[37]     Cary S C, McDonald I R, Barrett J E, et al. On the rocks: The microbiology of Antarctic Dry Valley soils[J]. Nat Rev Microbiol, 2010, 8(2): 129-138.

[38]     Merino N, Aronson H S, Bojanova D P, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context[J]. Frontiers in Microbiology, 2019, 10: 780

[39]     Rappaport H B, Oliverio A M. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology[J]. Nature Communications, 2023, 14(1): 4959.

[40]     von Hegner I. Extremophiles: A special or general case in the search for extra-terrestrial life[J]. Extremophiles, 2020, 24(1): 167-175.

[41]     Ando N, Barquera B, Bartlett D H, et al. The molecular basis for life in extreme environments[C]//Dill K A. Annual review of biophysics, Vol 50. 2021: 343-372.

[42]     Santomartino R, Averesch N J H, Bhuiyan M, et al. Toward sustainable space exploration: A roadmap for harnessing the power of microorganisms[J]. Nature Communications, 2023, 14(1): 1391.

[43]     Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta, 1981, 4(Suppl.C4): 59-69.

[44]     Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic-molecules: An inventory for the origins of life[J]. Nature, 1992, 355(6356): 125-132.

[45]     Holm N G, Andersson E M. Abiotic synthesis of organic-compounds under the conditions of submarine hydrothermal systems: A perspective[J]. Planetary and Space Science, 1995, 43(1-2): 153-159.

[46]     Lazcano A, Miller S L. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time[J]. Cell, 1996, 85(6): 793-798.

[47]     Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of the Biosphere, 1985, 15(4): 327-345.

[48]     Gonzalez B C, Iliffe T M, Macalady J L, et al. Microbial hotspots in anchialine blue holes: Initial discoveries from the Bahamas[J]. Hydrobiologia, 2011, 677(1): 149-156.

[49]     Djokic T, Van Kranendonk M J, Campbell K A, et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits[J]. Nature Communications, 2017, 8: 15263.

[50]     Davila-Ramos S, Castelan-Sanchez H G, Martinez-Avila L, et al. A review on viral metagenomics in extreme environments[J]. Frontiers in Microbiology, 2019, 10: 2403.

[51]     Gil J F, Mesa V, Estrada-Ortiz N, et al. Viruses in extreme environments, current overview, and biotechnological potential[J]. Viruses-Basel, 2021, 13(1): 81.

[52]     Rambo I M, Langwig M V, Leao P, et al. Genomes of six viruses that infect Asgard archaea from deep-sea sediments[J]. Nature Microbiology, 2022, 7(7): 953-961.

[53]     林巍, 李一良, 王高鸿, 等. 天体生物学研究进展和发展趋势[J]. 科学通报, 2020, 65(5): 380-391.

[54]     林巍, 申建勋, 潘永信. 关于我国天体生物学研究的思考[J]. 地球科学, 2022, 47(11): 4108-4113.

[55]     Angles A, Li Y. The western Qaidam Basin as a potential Martian environmental analogue: An overview[J]. Journal of Geophysical Research-Planets, 2017, 122(5): 856-888.

[56]     Xiao L, Wang J, Dang Y, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84-101.

[57]     程子烨, 肖龙, 王红梅, 等. 柴达木盆地盐类沉积物中类脂物的分布特征及天体生物学意义[J]. 中国科学:地球科学, 2022, 52(2): 356-369.

[58]     Smith D J. Microbes in the upper atmosphere and unique opportunities for astrobiology research[J]. Astrobiology, 2013, 13(10): 981-990.

[59]     DasSarma P, Antunes A, Simoes M F, et al. Earth's stratosphere and microbial life[J]. Current Issues in Molecular Biology, 2020, 38: 197-244.

[60]     Lin W, He F, Zhang W, et al. Astrobiology at altitude in Earth’s near space[J]. Nature Astronomy, 2022, 6(2): 289-289.

[61]     Wang Y, Jiang Y, Sun Z, et al. The Temperature-controlled biological samples exposure payload(TC-BIOSEP) for balloon-based astrobiology research[J]. Microgravity Science and Technology, 2023, 35(1): 10.

[62]     Mohr S M, Bagriantsev S N, Gracheva E O. Cellular, molecular, and physiological adaptations of hibernation: The solution to environmental challenges[J]. Annu Rev Cell Dev Biol, 2020, 36: 315-338.

[63]     戴钟铨, 李莹辉, 杨超, 等. 面向未来载人星际航行的空间低代谢调节技术[J]. 载人航天, 2021, 27(3): 269-275.

[64]     Shi Z, Qin M, Huang L, et al. Human torpor: Translating insights from nature into manned deep space expedition[J]. Biol Rev Camb Philos Soc, 2021, 96(2): 642-672.

[65]     Cerri M, Tinganelli W, Negrini M, et al. Hibernation for space travel: Impact on radioprotection[J]. Life Sciences in Space Research, 2016, 11: 1-9.

[66]     Nordeen C A, Martin S L. Engineering Human Stasis for Long-Duration Spaceflight[J]. Physiology, 2019, 34(2): 101-111.

[67]     Blackstone E, Morrison M, Roth M B. H2S induces a suspended animation-like state in mice[J]. Science, 2005, 308(5721): 518-518.

[68]     Cerri M, Mastrotto M, Tupone D, et al. The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat[J]. Journal of Neuroscience, 2013, 33(7): 2984-2993.

[69]     Frerichs K U, Smith C B, Brenner M, et al. Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation[J]. Proc Natl Acad Sci USA, 1998, 95(24): 14511-14516.

[70]     Arendt T, Stieler J, Strijkstra A M, et al. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals[J]. J Neurosci, 2003, 23(18): 6972-6981.

[71]     Storey K B, Storey J M. Metabolic rate depression in animals: Transcriptional and translational controls[J]. Biol Rev Camb Philos Soc, 2004, 79(1): 207-233.

[72]     Storey K B. Out cold: Biochemical regulation of mammalian hibernation: A mini-review[J]. Gerontology, 2010, 56(2): 220-230.

[73]     Hrvatin S, Sun S, Wilcox O F, et al. Neurons that regulate mouse torpor[J]. Nature, 2020, 583(7814): 115-121.

[74]     Takahashi T M, Sunagawa G A, Soya S, et al. A discrete neuronal circuit induces a hibernation-like state in rodents[J]. Nature, 2020, 583(7814): 109-114.

[75]     Yang Y, Yuan J, Field R L, et al. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound[J]. Nature Metabolism, 2023, 5(5): 789-803.

[76]     Dausmann K H, Glos J, Ganzhorn J U, et al. Physiology: Hibernation in a tropical primate—Even in the wound-down hibernating state, this lemur can warm up without waking up[J]. Nature, 2004, 429(6994): 825-826.

[77]     Blanco M B, Dausmann K H, Ranaivoarisoa J F, et al. Underground hibernation in a primate[J]. Scientific Reports, 2013, 3: 1768.

[78]     Wang Z, Ma J, Miyoshi C, et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need[J]. Nature, 2018, 558(7710): 435-439.

[79]     Round J L, Mazmanian S K. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9(5): 313-223.

[80]     Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249.

[81]     Carey H V, Assadi-Porter F M. The hibernator microbiome: Host-bacterial interactions in an extreme nutritional symbiosis[C]//Stover P J, Balling R. Annual review of nutrition, Annual Reviews: Palo Alto, CA, USA, Vol 37. [l1] 2017: 477-500.

[82]     Greene L K, Andriambeloson J-B, Rasoanaivo H A, et al. Variation in gut microbiome structure across the annual hibernation cycle in a wild primate[J]. Fems Microbiology Ecology, 2022, 98(7): fiac070.

[83]     Popov I V, Berezinskaia I S, Popov I V, et al. Cultivable gut microbiota in synanthropic bats: Shifts of its composition and diversity associated with hibernation[J]. Animals, 2023, 13(23): 3658.

[84]     Du Toit A. Busy symbionts during hibernation[J]. Nature Reviews Microbiology, 2022, 20(4): 190-190.

[85]     Regan M D, Chiang E, Liu Y, et al. Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season[J]. Science, 2022, 375(6579): 460-463.

[86]     Bouma H R, Carey H V, Kroese F G M. Hibernation: The immune system at rest[J]. Journal of Leukocyte Biology, 2010, 88(4): 619-624.

[87]     Jiang C, Storey K B, Yang H, et al. Aestivation in nature: Physiological strategies and evolutionary adaptations in hypometabolic states[J]. International Journal of Molecular Sciences, 2023, 24(18): 14093.

[88]     Fritze M, Costantini D, Fickel J, et al. Immune response of hibernating European bats to a fungal challenge[J]. Biology Open, 2019, 8(10): bio046078.

[89]     Irving A T, Ahn M, Goh G, et al. Lessons from the host defences of bats, a unique viral reservoir[J]. Nature, 2021, 589(7842): 363-370.

[90]     Dhivahar J, Parthasarathy A, Krishnan K, et al. Bat-associated microbes: Opportunities and perils, an overview[J]. Heliyon, 2023, 9(12): e22351.

[91]     Troitsky T S, Laine V N, Lilley T M. When the host's away, the pathogen will play: The protective role of the skin microbiome during hibernation[J]. Animal Microbiome, 2023, 5(1): 66.

[92]     Blehert D S, Hicks A C, Behr M, et al. Bat white-nose syndrome: An emerging fungal pathogen[J]. Science, 2009, 323(5911): 227-227.

[93]     Frick W F, Pollock J F, Hicks A C, et al. An emerging disease causes regional population collapse of a common north american bat species[J]. Science, 2010, 329(5992): 679-682.

[94]     Gargas A, Trest M T, Christensen M, et al. Geomyces destructans sp nov associated with bat white-nose syndrome[J]. Mycotaxon, 2009, 108: 147-154.

[95]     Warnecke L, Turner J M, Bollinger T K, et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 6999-7003.

[96]     Lorch J M, Meteyer C U, Behr M J, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome[J]. Nature, 2011, 480(7377): 376-U129.

[97]     Brunet K, Alanio A, Lortholary O, et al. Reactivation of dormant/latent fungal infection[J]. Journal of Infection, 2018, 77(6): 463-468.

[98]     Phan T G, Croucher P I. The dormant cancer cell life cycle[J]. Nat Rev Cancer, 2020, 20(7): 398-411.

[99]     Rehman S K, Haynes J, Collignon E, et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy[J]. Cell, 2021, 184(1): 226-242.

[100]   Recasens A, Munoz L. Targeting cancer cell dormancy[J]. Trends in Pharmacological Sciences, 2019, 40(2): 128-141.

[101]   Vallette F M, Olivier C, Lezot F, et al. Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer[J]. Biochemical Pharmacology, 2019, 162: 169-176.

[102]   Lewis K. Persister cells, dormancy and infectious disease[J]. Nature Reviews Microbiology, 2007, 5(1): 48-56.

[103]   Wilmaerts D, Windels E M, Verstraeten N, et al. General mechanisms leading to persister formation and awakening[J]. Trends in Genetics, 2019, 35(6): 401-411.

[104]   Liang J, Feng J-C, Zhang S, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments[J]. Iscience, 2021, 24(11): 103299.

[105]   Huang Z, Fang F, Ding L, et al. Technological advancements in field investigations of marine microorganisms: From sampling strategies to molecular analyses[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1981.

[106]   Lin Y, Chen J, Sun Z, et al. Editorial: Deep-sea sampling technology[J]. Frontiers in Marine Science, 2023, 10: 1182211.

[107]   Kingwell K. Microbial 'dark matter' yields new antibiotic[J]. Nat Rev Drug Discov, 2023, 22(11): 872.

[108]   Jiao J Y, Liu L, Hua Z S, et al. Microbial dark matter coming to light: Challenges and opportunities[J]. Natl Sci Rev, 2021, 8(3): nwaa280.

[109]   Dance A. The search for microbial dark matter[J]. Nature, 2020, 582(7811): 301-303.

[110]   Edgar R, Scholte N T B, Ebrahimkheil K, et al. Automated cardiac arrest detection using a photoplethysmography wristband: Algorithm development and validation in patients with induced circulatory arrest in the DETECT-1 study[J]. The Lancet Digital Health, 2024, 6(3): e201-e210.

[111]  Sandmann S, Riepenhausen S, Plagwitz L, et al. Systematic analysis of ChatGPT, Google search and Llama 2 for clinical decision support tasks[J]. Nature Communications, 2024, 15(1): 2050.

[112]   陈国青, 任明, 卫强, 等. 数智赋能:信息系统研究的新跃迁[J]. 管理世界, 2022, 38(1): 180-196.

[113]   Jiang L Y, Liu X C, Nejatian N P, et al. Health system-scale language models are all-purpose prediction engines[J]. Nature, 2023, 619(7969): 357-362.

[114]   Birnie M T, Baram T Z. Principles of emotional brain circuit maturation[J]. Science, 2022, 376(6597): 1055-1056.

[115]   Hsueh B, Chen R, Jo Y, et al. Cardiogenic control of affective behavioural state[J]. Nature, 2023, 615(7951): 292-299.

[116]   Snoek L, Jack R E, Schyns P G, et al. Testing, explaining, and exploring models of facial expressions of emotions[J]. Science Advances, 2023, 9(6): eabq8421.


Outlines

/