[1] Wiener N. Cybernetics, or control and communication in the animal and the machine (2nd ed.)[M]. Cambridge:MIT Press, 1961.
[2] Wang F Y. A big-data perspective on AI:Newton, Merton, and analytics intelligence[J]. IEEE Intelligent Systems, 2012, 27(5):2-4.
[3] Varela F J, Thompson E, Rosch E. The embodied mind:Cognitive science and human experience[M]. Cambridge:MIT Press, 1991.
[4] Gupta A, Savarese S, Ganguli S, et al. Embodied intelligence via learning and evolution[J]. Nature Communications, 2021, 12:5721.
[5] Mengaldo G, Renda F, Brunton S L, et al. A concise guide to modelling the physics of embodied intelligence in soft robotics[J]. Nature Reviews Physics, 2022, 4(9):595-610.
[6] Zhang C, Chen J X, Li J T, et al. Large language models for human-robot interaction:A review[J]. Biomimetic Intelligence and Robotics, 2023, 3(4):100131.
[7] Mahadevan K, Chien J, Brown N, et al. Generative expressive robot behaviors using large language models[J/OL].[2024-05-01]. https://arxiv.org/pdf/2401.14673v2.
[8] Cao X, Sun C Y, Wang X R. Threat assessment strategy of human-in-the-loop unmanned underwater vehicle under uncertain events[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2024, 54(1):520-532.
[9] Wang Y D, Cao J Y, Sun J, et al. Path following control for unmanned surface vehicles:A reinforcement learningbased method with experimental validation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024:1-14.
[10] Wang F Y, Zheng N N, Li L, et al. China's 12-year quest of autonomous vehicular intelligence:The intelligent vehicles future challenge program[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2):6-19.
[11] Bektaş K, Thrash T, van Raai M A, et al. The systematic evaluation of an embodied control interface for virtual reality[J]. PLoS One, 2021, 16(12):e0259977.
[12] Miao Q H, Lv Y S, Huang M, et al. Parallel learning:Overview and perspective for computational learning across Syn2Real and Sim2Real[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3):603-631.
[13] Dong L, He Z C, Song C W, et al. Multi-robot socialaware cooperative planning in pedestrian environments using attention-based actor-critic[J]. Artificial Intelligence Review, 2024, 57(4):108.
[14] Rosenblueth A, Wiener N, Bigelow J. Behavior, purpose and teleology[J]. Philosophy of Science, 1943, 10(1):18-24.
[15] Okita S Y. Social interactions and learning[M]//Encyclopedia of the Sciences of Learning. Boston. MA:Springer US, 2012:3104-3107.
[16] Kuipers B, Feigenbaum E A, Hart P E, et al. Shakey:From conception to history[J]. AI Magazine, 2017, 38(1):88-103.
[17] Huang W L, Wang C, Zhang R H, et al. VoxPoser:Composable 3D value maps for robotic manipulation with language models[J]. arXiv e-prints, 2023, doi:10.48550/arXiv.2307.05973.
[18] Bartolozzi C, Indiveri G, Donati E. Embodied neuromorphic intelligence[J]. Nature Communications, 2022, 13:1024.
[19] Matsuo Y, LeCun Y, Sahani M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022, 152:267-275.
[20] Liang J, Huang W L, Xia F, et al. Code as policies:Language model programs for embodied control[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE, 2023:9493-9500.
[21] Wang J G, Wang X, Tian Y L, et al. Parallel training:An ACP-based training framework for iterative learning in uncertain driving spaces[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4):2832-2841.
[22] Wang X, Yang J, Han J P, et al. Metaverses and DeMetaverses:From digital twins in CPS to parallel intelligence in CPSS[J]. IEEE Intelligent Systems, 2022, 37(4):97-102.
[23] Gan Y H, Zhang B, Shao J W, et al. Embodied intelligence:Bionic robot controller integrating environment perception, autonomous planning, and motion control[J]. IEEE Robotics and Automation Letters, 2024, 9(5):4559-4566.
[24] Fei N Y, Lu Z W, Gao Y Z, et al. Towards artificial general intelligence via a multimodal foundation model[J]. Nature Communications, 2022, 13:3094.
[25] Kalinowska A, Pilarski P M, Murphey T D. Embodied communication:How robots and people communicate through physical interaction[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6:205-232.
[26] Xu L L, Wang T, Wang J W, et al. Attention-based policy distillation for UAV simultaneous target tracking and obstacle avoidance[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2):3768-3781.
[27] Zhang B, Zhu J, Su H. Toward the third generation artificial intelligence[J]. Science China Information Sciences, 2023, 66(2):121101.
[28] 王飞跃, 缪青海. 基础智能:从联邦智能到基于TAO的智能系统联邦[J]. 科技导报, 2023, 41(19):103-112.
[29] 缪青海, 王兴霞, 杨静, 等. 从基础智能到通用智能:基于大模型的GenAI和AGI之现状与展望[J]. 自动化学报, 2024, 50(4):674-687.
[30] Mu Y, Yao S Y, Ding M Y, et al. EC2:Emergent communication for embodied control[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, 2023:6704-6714.
[31] Li L, Wang X, Wang K F, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28):eaaw4106.
[32] Sun C Y, Liu W Z, Dong L. Reinforcement learning with task decomposition for cooperative multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5):2054-2065.
[33] Liu W Z, Cai W Z, Jiang K, et al. XuanCe:A comprehensive and unified deep reinforcement learning library[J/OL].[2024-05-01]. https://arxiv.org/html/2312.16248v 1.
[34] Sun C, Wu X, Wang Y D, et al. Attention-based value classification reinforcement learning for collision-free robot navigation[J]. IEEE Transactions on Intelligent Vehicles, 2024, doi:10.1109/TIV.2024.3391007.