Exclusive: Digital and Intelligent Development of Power Grid

Research progress of chronic injury of muscle tissue

  • SUN Hao ,
  • HE Ling ,
  • LIU Dan
Expand
  • Key Laboratory Adcanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China

Received date: 2023-01-10

  Revised date: 2024-02-20

  Online published: 2024-06-12

Abstract

Long-term repetitive activities or incorrect postures make muscles bear continuous stress and the incidence of chronic injury of human muscle tissue is high. In this paper, the research status of muscle tissue morphological model, biophysical model, chronic injury analysis and data collection are reviewed. Muscle shape model is mainly based on line segment, volume and surface modeling methods, muscle dynamic modeling methods are worthy of further exploration. Muscle biophysical properties are based on muscle biological tests, and more efforts are needed to accurately describe the biophysical properties of muscle groups. The model of chronic muscle injury is mainly based on MRI data, and simulation experiments are carried out with the help of simulation platform and algorithm, which can further enhance simplification and optimization of calculation methods. A variety of measuring equipment such as myoelectrometer and depth sensor can be used for acquisition of physical quantities such as muscle deformation and force, and more innovations are expected in data fusion methods and algorithms. Finally, when studying chronic injury of muscle tissue, correct description of the morphology and mechanical properties of muscle tissue is the key to accurate results.

Cite this article

SUN Hao , HE Ling , LIU Dan . Research progress of chronic injury of muscle tissue[J]. Science & Technology Review, 2024 , 42(9) : 94 -101 . DOI: 10.3981/j.issn.1000-7857.2022.12.01971

References

[1] Järvinen T A H, Järvinen T L N, Kääriäinen M, et al. Muscle injuries[J]. The American Journal of Sports Medicine, 2005, 33(5): 745-764.
[2] Ben Kibler W. Clinical aspects of muscle injury[J]. Medicine & Science in Sports & Exercise, 1990, 22(4): 450-452.
[3] Chinese Aging Well Association. 肌肉骨骼慢性疼痛诊治专家共识[J]. 骨科, 2021, 12(5): 389-395.
[4] 郭建峤, 王言冰, 田强, 等. 人体肌骨的多柔体系统动力学研究进展[J]. 力学进展, 2022, 52(2): 253-310.
[5] Dong H, Liu M L, Martin C, et al. A residual stiffnessbased model for the fatigue damage of biological soft tissues[J]. Journal of the Mechanics and Physics of Solids, 2020, 143: 104074.
[6] Wang K, Wang L J, Deng Z, et al. Influence of passive elements on prediction of intradiscal pressure and muscle activation in lumbar musculoskeletal models[J]. Computer Methods and Programs in Biomedicine, 2019, 177: 39-46.
[7] Meister F, Passerini T, Mihalef V, et al. Deep learning aceleration of Total Lagrangian Explicit Dynamics for soft tissue mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112628.
[8] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.
[9] Topol E J. High-performance medicine: The convergence of human and artificial intelligence[J]. Nature Medicine, 2019, 25(1): 44-56.
[10] Hume D R, Navacchia A, Rullkoetter P J, et al. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling[J]. Journal of Biomechanics, 2019, 84: 153-160.
[11] Saputra A A, Hong C W, Matsuda T, et al. A real-time control system of upper-limb human musculoskeletal model with environmental integration[J]. IEEE Access, 2023, 11: 74337-74363.
[12] 唐庆玉, 徐升, 庄海红. 可视化人体医学图像数据库[J]. 仪器仪表学报, 2000, 21(增刊1): 12-16.
[13] Dickerson C R, Chaffin D B, Hughes R E. A mathematical musculoskeletal shoulder model for proactive ergonomic analysis[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2007, 10(6): 389-400.
[14] Zajac F E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews in Biomedical Engineering, 1989, 17(4): 359-411.
[15] Hoffmann M, Haering D, Begon M. Comparison between line and surface mesh models to represent the rotator cuff muscle geometry in musculoskeletal models[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(11): 1175-1181.
[16] 赵勇, 刘光鹏, 彭群生. 近似刚性的快速点云变形算法[J]. 计算机辅助设计与图形学学报, 2013, 25(7): 955-962.
[17] 杜正君, 张慧. 体积图控制的近似刚性的网格变形[J]. 计算机辅助设计与图形学学报, 2016, 28(2): 218-227.
[18] Eisenberger M, Lähner Z, Cremers D. Divergence-free shape correspondence by deformation[J]. Computer Graphics Forum, 2019, 38(5): 1-12.
[19] Duan Y P, Huang W M, Chang H B, et al. Volume preserved mass-spring model with novel constraints for soft tissue deformation[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(1): 268-280.
[20] Peng Y J, Ma Y R, Wang Y H, et al. The application of interactive dynamic virtual surgical simulation visualization method[J]. Multimedia Tools and Applications, 2017, 76(23): 25197-25214.
[21] 倪娜, 何坤金, 朱新成, 等. 一种人体肌肉的参数化建模及变形方法研究[J]. 系统仿真学报, 2022, 34(5): 1109-1117.
[22] Péan F, Goksel O. Surface-based modeling of muscles: Functional simulation of the shoulder[J]. Medical Engineering & Physics, 2020, 82: 1-12.
[23] Kuravi R, Leichsenring K, Böl M, et al. 3D finite element models from serial section histology of skeletal muscle tissue-The role of micro-architecture on mechanical behaviour[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113: 104109.
[24] Maier B, Schulte M. Mesh generation and multi-scale simulation of a contracting muscle-tendon complex[J]. Journal of Computational Science, 2022, 59: 101559.
[25] 徐铸业. 基于统计形状模型的医学图像3D建模方法研究[D]. 兰州: 兰州理工大学, 2021.
[26] Abderrazak K, Yacine B, Oussama R, et al. A shoulder musculoskeletal model with three-dimensional complex muscle geometries[J]. Annals of Biomedical Engineering, 2023, 51(5): 1079-1093.
[27] Aurbach M, Spicka J, Süß F, et al. Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90° [J]. Journal of Biomechanics, 2020, 106: 109817.
[28] 王艳. 骨骼肌肉运动解剖学[M]. 北京: 中国中医药出版社, 2021: 49-50.
[29] Milićević B, Ivanović M, Stojanović B, et al. Huxley muscle model surrogates for high-speed multi-scale simulations of cardiac contraction[J]. Computers in Biology and Medicine, 2022, 149: 105963.
[30] Stojanovic B, Svicevic M, Kaplarevic-Malisic A, et al. Multi-scale striated muscle contraction model linking sarcomere length-dependent cross-bridge kinetics to macroscopic deformation[J]. Journal of Computational Science, 2020, 39: 101062.
[31] Holzapfel G A, Ogden R W, Sherifova S. On fibre dispersion modelling of soft biological tissues: A review[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475(2224): 20180736.
[32] Bhattacharya P, Viceconti M. Multiscale modeling methods in biomechanics[J]. WIREs Systems Biology and Medicine, 2017, 9(3): e1375.
[33] 李洋, 桑建兵, 敖日汗, 等. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456.
[34] 陈业. 典型生物材料的动态力学特性研究[D]. 南京: 南京理工大学, 2020.
[35] Wakeling J M, Ross S A, Ryan D S, et al. The energy of muscle contraction. I. Tissue force and deformation during fixed-end contractions[J]. Frontiers in Physiology, 2020, 11: 524359.
[36] Tao J K, Xiao Y, Cao Y P, et al. Passive constitutive theory of a single muscle fiber for the potential diagnosis of muscle diseases at the molecular level[J]. Journal of the Mechanics and Physics of Solids, 2022, 167: 104981.
[37] 余孔清, 彭桂芳, 许永秋, 等. 超声引导下连续肌间沟臂丛神经阻滞对不同类型上肢骨折内固定术后镇痛的效果分析[J]. 山东医药, 2021, 61(16): 70-73.
[38] 何睿. 肌骨超声对创伤性浅表软组织损伤的诊断价值分析[J]. 中国医疗器械信息, 2022, 8(15): 86-88, 172.
[39] 刘文娟, 郑宁, 邵硕, 等. MRI 在肩袖钙化性肌腱炎诊断中的应用价值[J]. 医学影像学杂志, 2017, 27(10): 1985-1987.
[40] 梁冬丽. MRI 在肩关节冈上肌钙化性肌腱炎诊断中的应用价值[J]. 临床医药文献电子杂志. 2020, 7(42): 182.
[41] Gorgey A, Ghatas M, Khan M. Skeletal muscle stiffness as measured by magnetic resonance elastography after chronic spinal cord injury: A cross-sectional pilot study[J]. Neural Regeneration Research, 2021, 16(12): 2486.
[42] Quigley M, Kopinke D. Effects of fat tissue on chronic muscle injuries[J]. The FASEB Journal, 2020, 34(增刊1): 1.
[43] 车艳秋. Hodgkin-Huxley 模型的分岔与混沌分析[D]. 天津: 天津大学, 2005.
[44] Son J, Rymer W Z. Relative contribution of altered neuromuscular factors to muscle activation-force relationships following chronic stroke: A simulation study[J]. Journal of Electromyography and Kinesiology, 2022, 66: 102680.
[45] Dubey R, Kumar M, Upadhyay A, et al. Automated diagnosis of muscle diseases from EMG signals using empirical mode decomposition based method[J]. Biomedical Signal Processing and Control, 2022, 71: 103098.
[46] 王航, 王春晨, 代静, 等. 家兔颈腰肌长期受力下电阻抗和生物指标变化规律研究[J]. 医疗卫生装备, 2020, 41(5): 32-36, 69.
[47] 刘光达, 董梦坤, 张守伟, 等. 基于 KPCA-SVM 的表面肌电信号疲劳分类研究[J]. 电子测量与仪器学报, 2021, 35(10): 1-8.
[48] 陈煜, 管红波, 黄桂兰, 等. 偏瘫肩痛患者肩胛肌肉的表面肌电特征研究[J]. 中国康复医学杂志, 2020, 35(4): 447-452.
[49] Özsoy U, Yıldırım Y, Karaşin S, et al. Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation[J]. Journal of Shoulder and Elbow Surgery, 2022, 31(10): 2049-2056.
[50] Wu X Z, Kuzmichev V. A design of wetsuit based on 3D body scanning and virtual technologies[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 477-494.
[51] Parker C J, Gill S, Harwood A, et al. A method for increasing 3D body scanning’s precision: Gryphon and consecutive scanning[J]. Ergonomics, 2022, 65(1): 39-59.
[52] 王辉. 上肢肌肉痉挛功能评定与神经康复方法研究[D]. 北京: 中国科学院大学, 2019.
[53] Chen Z Y, Wang Q S, Bi Y C, et al. Analyzing human muscle state with flexible sensors[J]. Journal of Sensors, 2022, 2022: 5227955.
[54] Rosicka K, Mierzejewska- Krzyz.owska B, Mrówczyński W. Skin biomechanical and viscoelastic properties measured with MyotonPRO in different areas of human body[J]. Skin Research and Technology, 2022, 28(2): 236-245.
[55] 周静秋, 蒋宏伟, 刘君, 等. 网球膝关节损伤特征及生物力学建模综述研究[J]. 中国体育科技, 2021, 57(3): 37-44.
[56] 赵沁平, 李帅, 宋震, 等. 虚拟生理人体建模与仿真关键技术研究进展[J]. 中国科学基金, 2022, 36(2): 187-197.
Outlines

/