[1] Ezratty O. Perspective on superconducting qubit quantum computing[J]. The European Physical Journal A, 2023, 59(5):1-18.
[2] Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers[J]. Nature, 2010, 464(7285):45-53.
[3] 郑伟文, 李晓伟, 熊康林, 等. 超导量子芯片集成技术概述[J]. 电子元件与材料, 2022, 41(11):1143-1148.
[4] 郭光灿, 陈以彭, 王琴. 量子计算机研究进展[J]. 南京邮电大学学报, 2020, 40(5):3-10.
[5] Wang C L, Li X G, Xu H K, et al. Towards practical quantum computers:Transmon qubit with a lifetime approaching 0.5 milliseconds[J]. Quantum Information, 2022, 8(1):1-8.
[6] Alexander P M P, Lila V H R, Pranav M, et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature Communication, 2021, 12(1):1-6.
[7] Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497):500-503.
[8] Hong S S, Papageorge A T, Sivarajah P, et al. Demonstration of a parametrically activated entangling gate protected from flux noise[J]. Physical Review A, 2020, 101(1):1-8.
[9] Kjaergaard M, Schwartz M E, Jochen B, et al. Superconducting qubits:Current state of play[J]. Annual Review of Condensed Matter Physics, 2020, 11(1):369-395.
[10] Dunsworth A, Barends R, Chen Y, et al. A method for building low loss multi-layer wiring for superconducting microwave devices[J]. Applied Physics Letters, 2018, 112(6):502-505.
[11] Rosenberg D, Kim D, Das R, et al. 3D integrated superconducting qubits[J]. Nature Partner Journals Quantum Information, 2017, 3(1):42-46.
[12] Bethany M N, David K K, Mollie E S, et al. Silicon hard-stop spacers for 3d integration of superconducting qubits[C]//2019 IEEE International Electron Devices Meeting. San Francisco, CA, USA:Institute of Electrical and Electronics Engineers Inc, 2019:729-732.
[13] 郭秋江. 基于超导多比特电路的量子操控和量子多体物理研究[D]. 杭州:浙江大学, 2021.
[14] Dial O. Eagle's quantum performance progress[EB/OL]. (2022-03-24)[2023-09-14]. https://research.ibm.com/blog/eagle-quantum-processor-performance.
[15] Kosen S, Li H X, Rommel M, et al. Building blocks of a flip-chip integrated superconducting quantum processor[J]. Quantum Science and Technology, 2022, 7(3):1-9.
[16] Das R N, Yoder J L, Rosenberg D, et al. Cryogenic qubit integration for quantum computing[C]//2018 IEEE 68th Electronic Components and Technology Conference. San Diego, CA, USA:IEEE, 2018:504-514.
[17] Jochen B, Wayne W, Danna R, et al. Microwave packaging for superconducting qubits[C]//2019 IEEE MTT-S International Microwave Symposium (IMS). Boston, CA, USA:IEEE, 2019:275-278.
[18] Huang S H, Lienhard B, Calusine G, et al. Microwave package design for superconducting quantum processors[J]. PRX Quantum, 2021, 2(2):6-21.
[19] Brecht T, Pfaff W, Wang C, et al. Multilayer microwave integrated quantum circuits for scalable quantum computing[J]. NPJ Quantum Information, 2016, 2(1):2-5.
[20] Ma L, Ling H Q, Li M. Pure bottom-up filling process for efficient tsv metallization[C]//2013 14th International Conference on Electronic Packaging Technology. Dalian, China:IEEE, 2013:356-359.
[21] Josell D, Moffat T P. Bottom-up electrodeposition of zinc in through silicon vias[J]. Journal of The Electrochemical Society, 2015, 162(3):129-135.
[22] 黄鑫, 贺子凯, 王敏, 等. 锡铋合金电镀工艺条件的研究[J]. 电镀与涂饰, 2004, 23(4):25-27.
[23] Wang J J, Ma L M, Wang Y S. Investigation on filling method and thermal reliability of sn58bi-TSV[J]. Materials Letters, 2021, 288:10-13.
[24] 蔡积庆. Sn-Bi合金电镀[J]. 表面技术, 2000, 29(3):30-32.
[25] Josell D Z. Moffat T P. Bottom-up electrodeposition of zinc in through silicon vias[J]. Journal of the Electrochemical Society, 2015, 162(3):129-135.
[26] Alfaro J A, Sberna P M, Silvestri C, et al. Vacuum assisted liquified metal (valm) TSV filling method with superconductive material[C]//201831st IEEE International Conference on Micro Electro Mechanical Systems. Belfast, Northern Ireland, UK:IEEE, 2018:547-550.
[27] Young K K, Hiromichi T F, Yutaka S S, et al. Highspeed TSV filling with molten solder[J]. Microelectronic Engineering 2012, 89(1):62-64.
[28] Young K K, Myong S K, Hiroyuki K, et al. Advanced TSV filling method with sn alloy and its reliability[C]//2011 IEEE International 3D Systems Integration Conference. Osaka, Japan:IEEE, 2011:1-4.
[29] Alfaro B J A, Mastrangeli M, Thoen D J, et al. Highlyconformal sputtered through-silicon vias with sharp superconducting transition[J]. Journal of Latex Class Files, 2015, 14(8):1-9.
[30] Alfaro B J A, Mastrangeli M, Thoen D J, et al. Superconducting high-aspect ratio through-silicon vias with dcsputtered al for quantum 3d integration[J]. IEEE Electron Device Letters, 2020, 41(7):1114-1117.
[31] Yadav S, Wani V, Singh S, et al. CVD growth of tin selenide thin films for optoelectronic applications[C]//2022 IEEE Region 10 Symposium (TENSYMP). Mumbai, India:IEEE, 2022:1-6.
[32] Gao L, Zhang Y Y, Bao Y, et al. Tungsten voids improvement by optimizing mocvd-tin barrier layer plasma treatment at 28 nm technology node[C]//2017 China Semiconductor Technology International Conference (CSTIC). Shanghai, China:IEEE, 2017:1-7.
[33] Geringswald D, Hintze B, Erns M. Optimization of a tin pe-mocvd process using doe methodology[J]. Journal of Solid State Science and Technology, 2017, 6(7):76-82.
[34] Zhu Y F, Li F S, Huang R, et al. Remote plasma-enhanced atomic layer deposition of metallic tin films with low work function and high uniformity[J]. Journal of Vacuum Science & Technology A, 2018, 36(4):501-507.
[35] Musschoot J, Xie Q, Deduytsche D, et al. Atomic layer deposition of titanium nitride from tdmat precursor[J]. Microelectronic Engineering, 2009, 86(1):72-77.
[36] Caubet P, Blomberg T, Benaboud R, et al. Low-temperature low-resistivity peald tin using tdmat under hydrogen reducing ambient[J]. Journal of The Electrochemical Society, 2008, 155(8):625-632.
[37] Grigoras K, Simbierowicz S, Grönberg L, et al. Superconducting tin through-silicon-vias for quantum technology[C]//2019 IEEE 21st Electronics Packaging Technology Conference. Singapore:IEEE, 2019:81-82.
[38] Yost D R W, Schwartz M E, Mallek J, et al. Solid-state qubits integrated with superconducting through silicon vias[J]. NPJ Quantum Information, 2020, 6(1):59-65.
[39] Mallek J L, Yost D R W, Rosenberg D, et al. Fabrication of superconducting through-silicon vias[J]. arXiv preprint, 2021, doi:arXiv:2103.08536v1.
[40] Oliver W D. Fabricating quantum systems of superconducting qubits[R]. Boston, Massachusetts, USA:ASP, 2019.
[41] Sparacin D K, Spector S J, Kimerling L C, et al. Silicon waveguide sidewall smoothing by wet chemical oxidation[J]. Journal of Lightwave Technology, 2005, 23(8):2455-2461.
[42] Yaakub T N T, Yunas J, Latif R, et al. Surface modification of electroosmotic silicon microchannel using thermal dry oxidation[J]. Micromachines, 2018, 9(5):222-230.
[43] Piallat F, Vitiello J. At the edge between metal organic chemical vapor deposition and atomic layer deposition:Fast atomic sequential technique, for high throughput conformal deposition[J]. Journal of Vacuum Science & Technology B, 2016, 34(2):1-5.