Exclusive:Frontier of Chip Technology

Through silicon via filling technologies in superconducting quantum

  • ZHENG Weiwen ,
  • LUAN Tian ,
  • ZHANG Xiang
Expand
  • 1. Yangtze River Delta Industrial Innovation Center for Quantum Technology, Suzhou 215123, China;
    2. China Academic of Electronics and Information Technology, Beijing 100041, China

Received date: 2023-09-22

  Revised date: 2023-11-16

  Online published: 2024-04-15

Abstract

Superconducting quantum is one of the leading candidates in the race to build a quantum computer and multi-layer stacking may be the best solution for the superconducting qubits extending. This paper briefly introduces the characteristics of through silicon via (TSV) filling technology in superconducting quantum chips, and expounds and analyzes various filling technology schemes. The full-filling technologies, represented by electroplating and metal melt filling, have the advantages of high reliability and low overall process complexity but poor compatibility with semiconductor technology. The partial-filling technologies, represented by physical vapor deposition, chemical vapor deposition, atomic layer deposition and fast atomic sequential technique, have the advantages of good compatibility with semiconductor technology, but low reliability and high process complexity. And the new materials electroplating processes may be one promising solution in the future.

Cite this article

ZHENG Weiwen , LUAN Tian , ZHANG Xiang . Through silicon via filling technologies in superconducting quantum[J]. Science & Technology Review, 2024 , 42(2) : 50 -57 . DOI: 10.3981/j.issn.1000-7857.2024.02.005

References

[1] Ezratty O. Perspective on superconducting qubit quantum computing[J]. The European Physical Journal A, 2023, 59(5):1-18.
[2] Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers[J]. Nature, 2010, 464(7285):45-53.
[3] 郑伟文, 李晓伟, 熊康林, 等. 超导量子芯片集成技术概述[J]. 电子元件与材料, 2022, 41(11):1143-1148.
[4] 郭光灿, 陈以彭, 王琴. 量子计算机研究进展[J]. 南京邮电大学学报, 2020, 40(5):3-10.
[5] Wang C L, Li X G, Xu H K, et al. Towards practical quantum computers:Transmon qubit with a lifetime approaching 0.5 milliseconds[J]. Quantum Information, 2022, 8(1):1-8.
[6] Alexander P M P, Lila V H R, Pranav M, et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature Communication, 2021, 12(1):1-6.
[7] Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497):500-503.
[8] Hong S S, Papageorge A T, Sivarajah P, et al. Demonstration of a parametrically activated entangling gate protected from flux noise[J]. Physical Review A, 2020, 101(1):1-8.
[9] Kjaergaard M, Schwartz M E, Jochen B, et al. Superconducting qubits:Current state of play[J]. Annual Review of Condensed Matter Physics, 2020, 11(1):369-395.
[10] Dunsworth A, Barends R, Chen Y, et al. A method for building low loss multi-layer wiring for superconducting microwave devices[J]. Applied Physics Letters, 2018, 112(6):502-505.
[11] Rosenberg D, Kim D, Das R, et al. 3D integrated superconducting qubits[J]. Nature Partner Journals Quantum Information, 2017, 3(1):42-46.
[12] Bethany M N, David K K, Mollie E S, et al. Silicon hard-stop spacers for 3d integration of superconducting qubits[C]//2019 IEEE International Electron Devices Meeting. San Francisco, CA, USA:Institute of Electrical and Electronics Engineers Inc, 2019:729-732.
[13] 郭秋江. 基于超导多比特电路的量子操控和量子多体物理研究[D]. 杭州:浙江大学, 2021.
[14] Dial O. Eagle's quantum performance progress[EB/OL]. (2022-03-24)[2023-09-14]. https://research.ibm.com/blog/eagle-quantum-processor-performance.
[15] Kosen S, Li H X, Rommel M, et al. Building blocks of a flip-chip integrated superconducting quantum processor[J]. Quantum Science and Technology, 2022, 7(3):1-9.
[16] Das R N, Yoder J L, Rosenberg D, et al. Cryogenic qubit integration for quantum computing[C]//2018 IEEE 68th Electronic Components and Technology Conference. San Diego, CA, USA:IEEE, 2018:504-514.
[17] Jochen B, Wayne W, Danna R, et al. Microwave packaging for superconducting qubits[C]//2019 IEEE MTT-S International Microwave Symposium (IMS). Boston, CA, USA:IEEE, 2019:275-278.
[18] Huang S H, Lienhard B, Calusine G, et al. Microwave package design for superconducting quantum processors[J]. PRX Quantum, 2021, 2(2):6-21.
[19] Brecht T, Pfaff W, Wang C, et al. Multilayer microwave integrated quantum circuits for scalable quantum computing[J]. NPJ Quantum Information, 2016, 2(1):2-5.
[20] Ma L, Ling H Q, Li M. Pure bottom-up filling process for efficient tsv metallization[C]//2013 14th International Conference on Electronic Packaging Technology. Dalian, China:IEEE, 2013:356-359.
[21] Josell D, Moffat T P. Bottom-up electrodeposition of zinc in through silicon vias[J]. Journal of The Electrochemical Society, 2015, 162(3):129-135.
[22] 黄鑫, 贺子凯, 王敏, 等. 锡铋合金电镀工艺条件的研究[J]. 电镀与涂饰, 2004, 23(4):25-27.
[23] Wang J J, Ma L M, Wang Y S. Investigation on filling method and thermal reliability of sn58bi-TSV[J]. Materials Letters, 2021, 288:10-13.
[24] 蔡积庆. Sn-Bi合金电镀[J]. 表面技术, 2000, 29(3):30-32.
[25] Josell D Z. Moffat T P. Bottom-up electrodeposition of zinc in through silicon vias[J]. Journal of the Electrochemical Society, 2015, 162(3):129-135.
[26] Alfaro J A, Sberna P M, Silvestri C, et al. Vacuum assisted liquified metal (valm) TSV filling method with superconductive material[C]//201831st IEEE International Conference on Micro Electro Mechanical Systems. Belfast, Northern Ireland, UK:IEEE, 2018:547-550.
[27] Young K K, Hiromichi T F, Yutaka S S, et al. Highspeed TSV filling with molten solder[J]. Microelectronic Engineering 2012, 89(1):62-64.
[28] Young K K, Myong S K, Hiroyuki K, et al. Advanced TSV filling method with sn alloy and its reliability[C]//2011 IEEE International 3D Systems Integration Conference. Osaka, Japan:IEEE, 2011:1-4.
[29] Alfaro B J A, Mastrangeli M, Thoen D J, et al. Highlyconformal sputtered through-silicon vias with sharp superconducting transition[J]. Journal of Latex Class Files, 2015, 14(8):1-9.
[30] Alfaro B J A, Mastrangeli M, Thoen D J, et al. Superconducting high-aspect ratio through-silicon vias with dcsputtered al for quantum 3d integration[J]. IEEE Electron Device Letters, 2020, 41(7):1114-1117.
[31] Yadav S, Wani V, Singh S, et al. CVD growth of tin selenide thin films for optoelectronic applications[C]//2022 IEEE Region 10 Symposium (TENSYMP). Mumbai, India:IEEE, 2022:1-6.
[32] Gao L, Zhang Y Y, Bao Y, et al. Tungsten voids improvement by optimizing mocvd-tin barrier layer plasma treatment at 28 nm technology node[C]//2017 China Semiconductor Technology International Conference (CSTIC). Shanghai, China:IEEE, 2017:1-7.
[33] Geringswald D, Hintze B, Erns M. Optimization of a tin pe-mocvd process using doe methodology[J]. Journal of Solid State Science and Technology, 2017, 6(7):76-82.
[34] Zhu Y F, Li F S, Huang R, et al. Remote plasma-enhanced atomic layer deposition of metallic tin films with low work function and high uniformity[J]. Journal of Vacuum Science & Technology A, 2018, 36(4):501-507.
[35] Musschoot J, Xie Q, Deduytsche D, et al. Atomic layer deposition of titanium nitride from tdmat precursor[J]. Microelectronic Engineering, 2009, 86(1):72-77.
[36] Caubet P, Blomberg T, Benaboud R, et al. Low-temperature low-resistivity peald tin using tdmat under hydrogen reducing ambient[J]. Journal of The Electrochemical Society, 2008, 155(8):625-632.
[37] Grigoras K, Simbierowicz S, Grönberg L, et al. Superconducting tin through-silicon-vias for quantum technology[C]//2019 IEEE 21st Electronics Packaging Technology Conference. Singapore:IEEE, 2019:81-82.
[38] Yost D R W, Schwartz M E, Mallek J, et al. Solid-state qubits integrated with superconducting through silicon vias[J]. NPJ Quantum Information, 2020, 6(1):59-65.
[39] Mallek J L, Yost D R W, Rosenberg D, et al. Fabrication of superconducting through-silicon vias[J]. arXiv preprint, 2021, doi:arXiv:2103.08536v1.
[40] Oliver W D. Fabricating quantum systems of superconducting qubits[R]. Boston, Massachusetts, USA:ASP, 2019.
[41] Sparacin D K, Spector S J, Kimerling L C, et al. Silicon waveguide sidewall smoothing by wet chemical oxidation[J]. Journal of Lightwave Technology, 2005, 23(8):2455-2461.
[42] Yaakub T N T, Yunas J, Latif R, et al. Surface modification of electroosmotic silicon microchannel using thermal dry oxidation[J]. Micromachines, 2018, 9(5):222-230.
[43] Piallat F, Vitiello J. At the edge between metal organic chemical vapor deposition and atomic layer deposition:Fast atomic sequential technique, for high throughput conformal deposition[J]. Journal of Vacuum Science & Technology B, 2016, 34(2):1-5.
Outlines

/