Exclusive: Science and Technology Review in 2023

Review on urban AI hotspots in 2023

  • YAO Chong ,
  • ZHEN Feng ,
  • XI Guangliang
Expand
  • 1. School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China;
    2. Jiangsu Engineering Research Center of Smart City Design Planning and Digital Governance, Nanjing 210093, China

Received date: 2023-12-28

  Revised date: 2024-01-05

  Online published: 2024-04-09

Abstract

This paper summarizes the development hotspots of urban AI in 2023 from four aspects: The connotation and characteristics of urban AI, "urban research+AI", "urban planning+AI", and "urban construction and management+AI". Then,the future development trend of urban AI is prospected, including optimizing the top-level design of urban AI, building a smart platform for urban AI, strengthening the construction of urban AI scenarios, promoting disciplinary integration for urban AI, and preventing safety and ethical risks of urban AI.

Cite this article

YAO Chong , ZHEN Feng , XI Guangliang . Review on urban AI hotspots in 2023[J]. Science & Technology Review, 2024 , 42(1) : 306 -313 . DOI: 10.3981/j.issn.1000-7857.2024.01.020

References

[1] 新一代人工智能发展规划[EB/OL].(2017-07-08)[2023-12-20]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[2] Thomas W, Sanchez H S, Trey G, et al. The prospects of artificial intelligence in urban planning[J]. International Journal of Urban Sciences, 2023, 27(2):179-194.
[3] Zhong-R P, L K F, Liu Y H, et al. The pathway of urban planning AI:From planning support to plan-making[J].Journal of Planning Education and Research, 2023, doi:0739456X231180568.
[4] Zheng Y, Lin Y M, Zhao L, et al. Spatial planning of urban communities via deep reinforcement learning[J]. Nature Computational Science, 2023, 3(9):748-762.
[5] Srija C C E S. Adaptive modeling of satellite-derived nighttime lights time-series for tracking urban change processes using machine learning[J]. Remote Sensing of Environment, 2023, doi:10.1016/j.rse.2023.113818.
[6] 张可云,仲艾芬.我国制造业结对集聚水平测度及其特征:机器学习方法的改进与应用[J].经济地理, 2023, 43(4):124-133, 143.
[7] 程昌秀,裴韬,刘瑜,等.新时代自然灾害态势感知的实践与方法探索[J].地理学报, 2023, 78(3):548-557.
[8] 魏玺,甄峰,席广亮.南京都市圈居民非通勤出行特征及其影响因素研究[J].地理科学, 2023, 43(10):1740-1750.
[9] 汪成刚,王波,王琪智,等.城市活力与建成环境的非线性关系和阈值效应研究:以广州市中心城区为例[J].地理科学进展, 2023, 42(1):79-88.
[10] 赵秋皓,金平斌,王冰冰,等.基于多源数据与机器学习的乡村旅游竞争力评价研究:以杭州市临安区为例[J].地理科学进展, 2023, 42(8):1541-1555.
[11] Li Z, Huang S, Wang H, et al. Understanding the effects of urban perceptions on housing rent using big data and machine learning[J]. International Journal of Sustainable Development&World Ecology, 2023, 30(8):964-980.
[12] Zhao Z, Barijough K, Gerstlauer A, et al. Deep reinforcement learning for optimal rescue path planning in uncertain and complex urban pluvial flood scenarios[J]. Applied Soft Computing Journal, 2023, doi:10.1016/j.asoc.2023.110543.
[13] 刘瑜,汪珂丽,邢潇月,等.地理分析中的空间效应[J].地理学报, 2023, 78(3):517-531.
[14] 劳春华,林燕慧.基于深度学习和数学形态学的经济欠发达地区农村住房智能识别研究[J].热带地理,2023, 43(2):179-189.
[15] Ricky N, Vishwanath D, Clark S N, et al. Beyond here and now:Evaluating pollution estimation across space and time from street view images with deep learning[J].The Science of the Total Environment, 2023, doi:10.1016/j.scitotenv.2023.166168.
[16] Zhao C B, Ogawa Y, Chen S L, et al. People flow trend estimation approach and quantitative explanation based on the scene level deep learning of street view images[J]. Remote Sensing, 2023, doi:10.3390/rs15051362.
[17] 刘昱辰,陈晓纯,刘轶伦,等.基于街景影像和深度学习技术的城市流动商贩空间分布制图[J].热带地理,2023, 43(6):1098-1110.
[18] 方智果,王冉冉,刘聪,等.基于多源数据的街道环境对个体安全感的影响研究[J].上海城市规划, 2023(2):109-115.
[19] 李显正,赵振斌,刘阳,等.基于街景图像的古镇旅游地商业同质化空间测度:以大理古城为例[J].地理科学进展, 2023, 42(1):104-115.
[20] Sun H, Xu H, He H, et al. A spatial analysis of urban streets under deep learning based on street view imagery:Quantifying perceptual and elemental perceptual relationships[J]. Sustainability, 2023, doi:10.3390/su1520-14798.
[21] 吴佳雨,王诗奕,李红,等.基于人工智能技术的植被色彩感知与焦虑关联分析[J].地理学报, 2023, 78(4):1044-1056.
[22] 《城市规划学刊》编辑部.新一代人工智能赋能城市规划:机遇与挑战[J].城市规划学刊, 2023(4):1-11.
[23] 吴志强,甘惟,刘朝晖,等. AI城市:理论与模型架构[J].城市规划学刊, 2022(5):17-23.
[24] 甄峰,席广亮,张姗琪,等.智慧城市人地系统理论框架与科学问题[J].自然资源学报, 2023, 38(9):2187-220.
[25] Heinrich T S, Zack W, Tan Y, et al. Algorithmic urban planning for smart and sustainable development:Systematic review of the literature[J]. Sustainable Cities and Society, 2023, doi:10.1016/j.scs.2023.104562.
[26] Chulwoong P, Wonjun N, Junyong C, et al. Development of an AI advisor for conceptual land use planning[J]. Cities, 2023, doi:10.1016/j.cities.2023.104371.
[27] Pau S, Vicente R, Maurici R, et al. Methodological proposal for the analysis of urban mobility using Wi-Fi data and artificial intelligence techniques:The case of palma[J]. Electronics, 2023, doi:10.3390/electronics120305-04.
[28] Wang H, Zhao Z, Ma Y, et al. Sustainable road planning for trucks in urbanized areas of Chinese cities using deep learning approaches[J]. Sustainability, 2023, doi:10.3390/su15118763.
[29] 汪波,牛朝文.从ChatGPT到GovGPT:生成式人工智能驱动的政务服务生态系统构建[J].电子政务, 2023(9):25-38.
[30] 陈潭,刘璇.智能政务ChatGPT化的前景与隐忧[J].电子政务, 2023(4):36-44.
[31] 周智博. ChatGPT模型引入我国数字政府建设:功能、风险及其规制[J].山东大学学报(哲学社会科学版),2023(3):144-154.
[32] 何哲,曾润喜,秦维,等. ChatGPT等新一代人工智能技术的社会影响及其治理[J].电子政务, 2023(4):22-24.
[33] 张夏恒.类ChatGPT人工智能技术嵌入数字政府治理:价值、风险及其防控[J].电子政务, 2023(4):45-56.
[34] 张成福,王祥州.人工智能嵌入公共服务治理的风险挑战[J].电子政务, 2023(1):37-51.
[35] 廖勇,张炎,汪浩,等.智能网联新能源汽车中的人工智能技术应用综述[J].重庆理工大学学报(自然科学版), 2023, 37(7):1-15.
[36] 杨晓光,马成元,王一喆,等.交通人工智能及其发展综述研究[J].人工智能, 2022(4):18-29.
[37] 朱力,龚泰源,梁豪,等.边缘智能在轨道交通中的应用:前景与展望[J].电子与信息学报, 2023, 45(4):1514-1528.
[38] 曾雄. ChatGPT在金融行业的应用探讨[J].金融科技时代, 2023, 31(5):19-22.
[39] 邱冬阳,蓝宇. ChatGPT给金融行业带来的机遇、挑战及问题[J].西南金融, 2023(6):18-29.
[40] 汪寿阳,李明琛,杨昆,等. ChatGPT+金融:八个值得关注的研究方向与问题[J].管理评论, 2023, 35(4):3-11.
[41] 王耀南,江一鸣,姜娇,等.机器人感知与控制关键技术及其智能制造应用[J].自动化学报, 2023, 49(3):494-513.
[42] 乔非,孔维畅,刘敏,等.面向智能制造的智能工厂运营管理[J].管理世界, 2023, 39(1):216-225.
[43] 赵汉卿,段京丰,罗嘉伦.人工智能技术在大数据网络安全防御中的运用研究[J].网络安全技术与应用, 2023(3):19-20.
[44] 刘钊,林晞楠,李昂霖.人工智能在犯罪预防中的应用及前景分析[J].中国人民公安大学学报(社会科学版),2018, 34(4):1-10.
[45] 金益锋,马忠红.刑事侦查中人工智能的应用:实践样态、风险挑战与发展策略[J].科技导报, 2023, 41(7):15-27.
Outlines

/