[1] 杨展,李希圣,黄伟雄.地理学大辞典[M].安徽:安徽人民出版社, 1992.
[2] 孙即霖,彭垣.海洋小百科全书:海洋气象[M].广州:中山大学出版社, 2012.
[3] Shan K, Lin Y, Chu P S, et al. Seasonal advance of intense tropical cyclones in a warming climate[J]. Nature,2023, doi:10.1038/s41586-023-06544-0.
[4] Chan J C L. Frequency and intensity of landfalling tropical cyclones in East Asia:Past variations and future projections[J]. Meteorology, 2023, 2:171-190.
[5] Huang X, Zhou T J, Chan J C, et al. Understanding uncertainties in projections of western North Pacific tropical cyclogenesis[J]. Environmental Research Letters, 2023, 18(11):114037.
[6] Cao X, Wu R G, Xu L T, et al. A trans-season out-ofphase relationship of tropical cyclogenesis between the Western North Pacific and South China Sea[J]. Journal of Climate, 2023, 36:3697-3716.
[7] Chen X, Guo Y P, Tan Z M, et al. Influence of different types of ENSO events on the tropical cyclone rainfall over the western North Pacific[J]. Climate Dynamics, 2023, 60(11/12):3969-3982.
[8] Li X M, Zhan R F, Wang Y Q, et al. Recent increase in rapid intensification events of tropical cyclones along China coast[J]. Climate Dynamics, 2023, doi:10.1007/s00382-023-06917-1.
[9] Liu H Y, Gu J F, Wang Y Q. Consistent pattern of rainfall asymmetry in binary tropical cyclones[J]. Geophysical Research Letters, 2023, 50:e2022GL101866.
[10] Zhang X Y, Ditchek S D, Kristen L C, et al. Global and regional characteristics of radially outward propagating tropical cyclone diurnal pulses[J]. Journal of Geophsical Research-Atmospheres, 2023, 128:e2022JD037660.
[11] Zhang X Y, Xu W X. Diurnal Variations on the initiation time and intensification rate of rapidly intensifying tropical cyclones[J]. Geophysical Research Letters,2023, 50(14):e2023GL103551.
[12] Sun Z Y, Bai L, Zhu X S, et al. The extraordinarily large vortex structure of Typhoon In-fa(2021), observed by spaceborne microwave radiometer and synthetic aperture radar[J]. Atmospheric Research, 2023, 292:106837.
[13] Zheng Y X, Ma Z H, Tang J, et al. The coastal effect on ahead-of-eye-center cooling induced by tropical cyclones[J]. Journal of Physical Oceanography, 2023, 53:1519-1534.
[14] Zhang H. Modulation of upper ocean vertical temperature structure and heat content by a fast-moving tropical cyclone[J]. Journal of Physical Oceanography, 2023,53(2):493-508.
[15] Ye S N, Zhang R H, Wang H N. The role played by tropical cyclones-induced freshwater flux forcing in the upper-ocean responses:A case for Typhoon Yutu(2018)[J]. Ocean Modelling, 2023, 184:102211.
[16] He L K, Li Q L, Wang Y Q, et al. Effects of urban expansion and anthropogenic heat enhancement on tropical cyclone precipitation in the Greater Bay Area of China[J]. Journal of Geophsical Research-Atmospheres,2023, 128:e2022JD038184.
[17] Ye G J, Zhang X, Yu H. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(4):e2022MS003530.
[18] Li D Y, Tan Z. The role of ocean-atmosphere interactions in tropical cyclone intensity predictability[J]. Journal of the Atmospheric Sciences, 2023, 80:1213-1226.
[19] Zhuo J Y, Tan Z M. A deep-learning reconstruction of tropical cyclone size metrics 1981—2017:Examining trends[J]. Journal of Climate, 2023, 36:5103-5123.
[20] Zhang H, Jin M Y, Zhang H Y, et al. Deep learning approach for forecasting sea surface temperature response to tropical cyclones in the Western North Pacific[J].Deep Sea Research Part I:Oceanographic Research Papers, 2023, 197:104042.
[21] Cui H X, Tang D L, Mei W, et al. Predicting tropical cyclone-induced sea surface temperature responses using machine learning[J]. Geophysical Research Letters,2023, 50:e2023GL104171.
[22] Wang L Y, Tan Z. Deep learning parameterization of the tropical cyclone boundary layer[J]. Deep Learning Parameterization of the Tropical Cyclone Boundary Layer,2023, 15(1):e2022MS003034.
[23] 宛霞,唐碧.地海空天多平台协同观测台风科学试验成功[N].中国气象报, 2020-10-20(1).
[24] 王婉,刘钊.地空天协同开展台风加密观测试验[N].中国气象报, 2022-08-12(1).
[25] 刘倩,安涛,孙夏.中国气象局首次开展南海台风多平台协同机动观测[N].中国气象报, 2023-09-05(1).
[26] Gilson G F, Jiskoot H, Gueye S, et al. A climatology of Arctic fog along the coast of East Greenland[J]. Quarterly Journal of the Royal Meteorological Society, 2023,doi:10.1002/qj.4617.
[27] Song S T, Chen Y, Chen X Y, et al. Adapting to a foggy future along trans-arctic shipping routes[J]. Geophysical Research Letters, 2023, 50(8):e2022GL102395.
[28] Yi L, Li K F, Chen X Y, et al. Summer marine fog distribution in the Chukchi-Beaufort Seas[J]. Earth and Space Science, 2023, 10(2):e2021EA002049.
[29] Pope N H, Igel A L. Identifying important microphysical properties and processes for marine fog forecasts[J].Monthly Weather Review, 2023, 151(9):2427-2441.
[30] Xiao Y F, Liu R J, Ma Y, et al. MERRA-2 reanalysisaided sea fog detection based on CALIOP observation over North Pacific[J]. Remote Sensing of Environment,2023, 292:113583.
[31] Yang L, Ding S S, Liu J W, et al. Effects of longwave radiative cooling on advection fog over the Northwest Pacific Ocean:Observations and large eddy simulations[J/OL]. EGUsphere, 2023.[2023-12-01]. https://doi.org/10.5194/egusphere-2023-1494.
[32] Yun J H, Ha K J. Physical processes in sea fog formation and characteristics of turbulent air-sea fluxes at Socheongcho ocean research station in the Yellow sea[J].Frontiers in Marine Science, 2022, 9:825973.
[33] Kim Y, Ryu H S, Hong S. Data-to-data translationbased nowcasting of specific sea fog using geostationary weather satellite observation[J]. Atmospheric Research,2023, 290:106792.
[34] Wang X Y, Dai G Y, Wu S H, et al. Classification of turbulent mixing driven sources in marine atmospheric boundary layer with use of shipborne coherent doppler lidar observations[J]. Journal of Geophysical ResearchAtmospheres, 2023, 128(20):e2023JD038918.
[35] Li X F, Shen D L, Zheng G, et al. comprehensive satellite observations and a numerical study of a Wintertime Shallow Sea Smoke Event in the Yellow Sea[J]. Journal of the Atmospheric Sciences, 2022, 79(12):3163-3179.
[36] Hu L J, Xu R, Yang M, et al. Enhancing maritime safety and efficiency:A Comprehensive sea fog monitoring system for Ningbo Zhoushan Port[J]. Atmosphere, 2023, 14(10):1513.
[37] Tu X, Yao R S, Hu L J, et al. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution, observation and simulation study on the macro-microphysical characteristics of a coastal fog offshore Zhejiang Province of China[J]. Atmospheric Research, 2023, 282:106537.
[38] Kong X J, Jiang Z H, Ma M, et al. The temporal and spatial distribution of sea fog in offshore of China based on FY-4A satellite data[C]. Journal of Physics:Conference Series. IOP Publishing, 2023, 2486(1):012015.
[39] Han L G, Long J C, Xu F, et al. Decadal shift in sea fog frequency over the Northern South China Sea in spring:Interdecadal variation and impact of the Pacific Decadal Oscillation[J]. Atmospheric Research, 2022, 265:105905.
[40] Zhou M S, Huang H J, Lao H Q, et al. Feasibility analysis of early warning of sea fog within six hours for two harbors in the South China Sea[J]. Frontiers in Earth Science, 2022, 10:968744.
[41] Zuo Z, Zhang K. Link between the Land-Sea Thermal Contrast and the Asian Summer Monsoon[J]. Journal of Climate, 2023, 36(1):213-225.
[42] Liu B Q, Duan Y N. Diverse interannual variability of asian summer monsoon onset process[J]. Geophysical Research Letters, 2023, doi:10.1029/2022GL100583.
[43] Zhuang M, Duan A, Lu R, et al. Relative impacts of the orography and land-sea contrast over the indochina peninsula on the Asian summer monsoon between early and late summer[J]. Journal of Climate, 2022, 35(10):3037-3055.
[44] Lin S H, Dong B W, Yang S, et al. Causes of diverse impacts of ENSO on the Southeast Asian summer monsoon among CMIP6 Models[J]. Journal of Climate, 2021, 37(2):419-438.
[45] Lu M M, Yang S, Zhu C W, et al. Thermal impact of the Southern Tibetan Plateau on the Southeast Asian Summer Monsoon and Modulation by the Tropical Atlantic SST[J]. Journal of Climate, 2022, 36(5):1319-1330.
[46] Wang H, Li Z G, Li J P, et al. Interannual variation in the East Asian summer monsoon-tropical Atlantic SST relationship modulated by the Interdecadal Pacific Oscillation[J]. NPJ Climate and Atmospheric Science, 2023, 6(1):169.
[47] Hu D, Duan A M, Tang Y H, et al. Delayed onset of the tropical Asian summer monsoon in CMIP6 can be linked to the cold bias over the Tibetan Plateau[J]. Environmental Research Letters, 2023, 18:11405.
[48] Huang J P, Zhou X J, Wu G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3):e2022RG000771.
[49] Li X Y, Li Q Q, Ding Y H, et al. Possible influence of the interdecadal variation of the extratropical southern Indian Ocean SST on East Asian summer monsoon precipitation[J]. Atmospheric Research, 2023, 288:106721.
[50] Gui S, Yang R W, Zeng F, et al. Interdecadal variability in the interface between the indian summer monsoon and the East Asian Summer Monsoon[J]. Journal of Geophysical Research-Atmospheres, 2023, 128(20):e2022-JD038399.
[51] Dai L, Cheng T F, Wang B, et al. Subseasonal features of the Indian monsoon[J]. Journal of Climate, 2023, 36(20):7199-7211.
[52] Zhang D Q, Chen L J, Martin G M, et al. Seasonal prediction skill and biases in glosea5 relating to the East Asia winter monsoon[J]. Advances in Atmospheric Sciences, 2023, 40(11):2013-2028.
[53] Marusic I, Monty J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51(1):49-74.
[54] Sun J, French J R. Air-sea interactions in light of new understanding of air-land interactions[J]. Journal of the Atmospheric Sciences, 2016, 73(10):3931-3949.
[55] Babanin A V, McConochie J, Chalikov D. Winds near the surface of waves:Observations and modeling[J]. Journal of Physical Oceanography, 2018, 48(5):1079-1088.
[56] Voermans J J, Rapizo H, Ma H Y, et al. Air-sea momentum fluxes during tropical cyclone olwyn[J]. Journal of Physical Oceanography, 2019, 49(6):1369-1379.
[57] Huang J, Zou Z S, Zeng Q C, et al. The turbulent structure of the marine atmospheric boundary layer during and before a cold front[J]. Journal of the Atmospheric Sciences, 2021, 78(3):863-875.
[58] Liu C L, Li X Y, Song J B, et al. Characteristics of the marine atmospheric boundary layer under the influence of ocean surface waves[J]. Journal of Physical Oceanography, 2022, 52(6):1261-1276.
[59] Grare L, Lenain L, Melville W K. Wave-Coherent airflow and critical layers over ocean waves[J]. Journal of Physical Oceanography, 2013, 43(10):2156-2172.
[60] Miles J W. On the generation of surface waves by shear flows[J]. Journal of Fluid Mechanics, 1957, 3(2):185-204.
[61] Chen S, Qiao F, Zhang J A, et al. Swell modulation on wind stress in the constant flux layer[J]. Geophysical Research Letters, 2020, 47(20):e2020GL089883.
[62] Wu L C, Qiao F. Wind profile in the wave boundary layer and its application in a coupled atmosphere-wave model[J]. Journal of Geophysical Research-Oceans,2022, 127(2):e2021JC018123.
[63] Buckley M P, Veron F. Structure of the airflow above surface waves[J]. Journal of Physical Oceanography,2016, 46(5):1377-1397.
[64] Cao T, Shen L. A numerical and theoretical study of wind over fast-propagating water waves[J]. Journal of Fluid Mechanics, 2021, 919(A38):PII S0022112021004-16X.
[65] Grare L, Lenain L, Melville W K. Vertical profiles of the wave-induced airflow above ocean surface waves[J].Journal of Physical Oceanography, 2018, 48(12):2901-2922.
[66] Mahrt L, Thomas C K, Grachev A A, et al. Near-surface vertical flux divergence in the stable boundary layer[J].Boundary-Layer Meteorology, 2018, 169(3):373-393.
[67] Ortiz-Suslow D G, Kalogiros J, Yamaguchi R, et al. An evaluation of the constant flux layer in the atmospheric flow above the wavy air-sea interface[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(8):e2020JD-032834.
[68] Huang J, Pickart R S, Chen Z M, et al. Role of air-sea heat flux on the transformation of Atlantic Water encircling the Nordic Seas[J]. Nature Communications, 2023, 14(1):141.
[69] Liu C W, Yang Q H, Xu M, et al. Response of sea surface heat fluxes to the South China Sea summer monsoon onset in 2021[J]. Atmospheric Research, 2023,282:106513.
[70] Barrell C, Renfrew I A, King J C, et al. Projected changes to wintertime air-sea turbulent heat fluxes over the subpolar North Atlantic Ocean[J]. Earths Future, 2023,11(4):e2022EF003337.
[71] Song X Z, Wang X Y, Cai W B, et al. Observed air-sea turbulent heat flux anomalies during the onset of the South China sea summer monsoon in 2021[J]. Monthly Weather Review, 2023, 151(9):2443-2464.
[72] Zhi X F, Pan M T, Song B, et al. Investigating air-sea interactions in the North Pacific on interannual timescales during boreal winter[J]. Atmospheric Research,2022, 269:106043.
[73] Mayer J, Haimberger L, Mayer M. A quantitative assessment of air-sea heat flux trends from ERA5 since 1950in the North Atlantic basin[J]. Earth System Dynamics,2023, 14(5):1085-1105.
[74] Giudici A, Jankowski M Z, Mannikus R, et al. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets[J]. Estuarine Coastal and Shelf Science, 2023, 290:108401.
[75] Liu Y L, Huang L M, Ma X W, et al. A fast, high-precision deep learning model for regional wave prediction[J].Ocean Engineering, 2023, 288:115949.
[76] Wang M, Ying F X. Point and interval prediction for significant wave height based on LSTM-GRU and KDE[J].Ocean Engineering, 2023, 289:116247.
[77] Yu M, Wang Z F, Song D L, et al. Spatio-temporal ocean wave conditions forecasting using MA-TrajGRU model in the South China sea[J]. Ocean Engineering,2024, 291(1):116486.
[78] Yuan Y, Shen L L, Yan H M, et al. Three cold surges in China during the winter of 2020/2021 and their low-frequency features[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(5):1557-1575.
[79] Shao J H, Diao Y N. Analysis characteristics if the blocking cold surge paths and circulation in Autumn and Winter in China[J]. Periodical of Ocean University of China, 2023, 53(4):145-158.
[80] Liu Q, Huang L, Bai L Q. Delayed effects of large-scale cold surge on winter heavy rainfall in southern China[J].Atmospheric Research, 2023, 285:106632.
[81] Abdillah M R, Kanno Y, Iwasaki T, et al. Cold surge pathways in East Asia and their tropical impacts[J]. Journal of Climate, 2021, 34(1):157-170.
[82] Tan I, Reeder M J, Singh M S, et al. Wet and dry cold surges over the Maritime Continent[J]. Journal of Geophysical Research:Atmospheres, 2023, 128(12):e2022-JD038196.
[83] Aman N, Manomaiphiboon K, Pala-En N, et al. A study of urban haze and its association with cold surge and sea breeze for greater bangkok[J]. International Journal of Environmental Research and Public Health, 2023, 20(4):3482.
[84] Praja A S, Trismidianto. Impact of cold surge based on its strength on rainfall distribution in Western Indonesia[C]. International Conference on Radioscience, Equatorial Atmospheric Science and Environment, 2023, 290:349-357.
[85] Zheng F, Yuan Y, Ding Y H, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic[J]. Advances in Atmospheric Sciences, 2022, 39(4):546-552.