Exclusive: Science and Technology Review in 2023

Review of planetary physics in 2023

  • WEI Yong ,
  • CHAI Lihui ,
  • CHEN Yiding ,
  • FAN Kai ,
  • GAO Jiawei ,
  • HE Fei ,
  • LE Huijun ,
  • LI Guozhu ,
  • LIN Honglei ,
  • QI Chao ,
  • RONG Zhaojin ,
  • SONG Yuhuan ,
  • SUN Weijia ,
  • WANG Yuqi ,
  • WU Zhaopeng ,
  • XU Changyi ,
  • YAN Limei ,
  • YAO Zhonghua ,
  • YUAN Chongjing ,
  • YUE Xin'an ,
  • ZHANG Chi ,
  • ZHANG Hui ,
  • ZHANG Jinhai ,
  • ZHONG Jun
Expand
  • 1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-12-29

  Revised date: 2024-01-05

  Online published: 2024-04-09

Abstract

In 2023, planetary physics, a major branch of planetary science, exhibited a diverse and thriving landscape. China's planetary physics evolved into emerging areas, including the processes of generating solar and planetary magnetic fields, longterm variations in the space environments of Earth and other planets, and interconnected processes within Earth and planetary multilayer systems. These advancements laid a solid foundation for the future progress of deep space exploration. This paper carefully selects 20 research areas in planetary physics, focusing on the developments and key areas of interest within China's planetary physics. By placing them within the spatiotemporal context of the world and history, the paper presents a comprehensive overview of the planetary physics trends both in China and the world.

Cite this article

WEI Yong , CHAI Lihui , CHEN Yiding , FAN Kai , GAO Jiawei , HE Fei , LE Huijun , LI Guozhu , LIN Honglei , QI Chao , RONG Zhaojin , SONG Yuhuan , SUN Weijia , WANG Yuqi , WU Zhaopeng , XU Changyi , YAN Limei , YAO Zhonghua , YUAN Chongjing , YUE Xin'an , ZHANG Chi , ZHANG Hui , ZHANG Jinhai , ZHONG Jun . Review of planetary physics in 2023[J]. Science & Technology Review, 2024 , 42(1) : 99 -113 . DOI: 10.3981/j.issn.1000-7857.2024.01.006

References

[1] Yan L M, He F, Yue X N, et al. The 8-year solar cycle during the maunder minimum[J]. AGU Advances, 2023, 4(5):e2023AV000964.
[2] Scharping N. Aurora records reveal shortened solar cycle during maunder minimum[J]. Eos, 2023, 104.
[3] Baker H. Strange anomaly in sun's solar cycle discovered in centuries-old texts from Korea[EB/OL].[2023-10-23].https://www.space.com/sun-solar-cycle-anomaly-discovered-korean-texts.
[4] Wang Y, Zhong J, Slavin J, et al. MESSENGER observations of standing whistler waves upstream of mercury's bow shock[J]. Geophysical Research Letters, 2023, 50(10):e2022GL102574.
[5] Chen Y W, Shue J H, Zhong J, et al. Anomalous response of mercury's magnetosphere to solar wind compression:Comparison to earth[J]. The Astrophysical Journal, 2023,957(1):26.
[6] Shao P, Ma Y H, Odstrcil D. Solar wind directional change triggering large-amplitude deflection of Mercury's Current sheet[J]. Astrophysics and Space Science, 2023,368(4):28.
[7] Zhong J, Lee L C, Slavin J A, et al. MESSENGER observations of reconnection in mercury's magnetotail under strong IMF forcing[J]. Journal of Geophysical Research:Space Physics, 2023, 128(2):e2022JA031134.
[8] Shao P, Ma Y H, Zeng G. MESSENGER observations of multiple magnetic energy releases during mercury's substorm[J]. The Astrophysical Journal, 2023, 953(1):110.
[9] 石振,戎昭金,魏勇.水星内磁层等离子体带及电流体系[J].地球物理学报, 2023, 66(6):2236-2251.
[10] Aizawa S, Harada Y, AndréN, et al. Direct evidence of substorm-related impulsive injections of electrons at Mercury[J]. Nature Communications, 2023, 14:4019.
[11] Xu S S, Frahm R A, Ma Y J, et al. Statistical mapping of magnetic topology at Venus[J]. Journal of Geophysical Research:Space Physics, 2023, 128(12):e2023JA0321-33.
[12] Stergiopoulou K, Jarvinen R, Andrews D J, et al. Solar orbiter data-model comparison in Venus'induced magnetotail[J]. Journal of Geophysical Research:Space Physics, 2023, 128(2):e2022JA031023.
[13] Rojas M S, Stenberg W G, Futaana Y, et al. Proton plasma asymmetries between Venus'quasi-perpendicular and quasi-parallel magnetosheaths[J]. Journal of Geophysical Research(Space Physics), 2023, 128(6):e2022-JA031149.
[14] Xu Q, Xie L H, Rong Z J, et al. The magnetic field clock angle departure in the Venusian magnetosheath and its response to IMF rotation[J]. Astronomy&Astrophysics, 2023, 677:A142.
[15] Dang T, Zhang B, Yan M, et al. A new tool for understanding the solar wind-venus interaction:Three-dimensional Multifluid MHD Model[J]. The Astrophysical Journal, 2023, 945(2):91.
[16] Xu Q, Xu X, Zuo P, et al. Solar control of the pickup ion plume in the dayside magnetosheath of Venus[J].Geophysical Research Letters, 2023, 50(4):e2022GL10-2401.
[17] Ma Y, Combi M R, Tenishev V, et al. The effects of the upper atmosphere and corona on the solar wind interaction with venus[J]. Journal of Geophysical Research:Space Physics, 2023, 128(4):e2022JA031239.
[18] Signoles C, Persson M, Futaana Y. et al. Influence of solar wind variations on the shapes of venus'plasma boundaries based on venus express observations[J]. The Astrophysical Journal, 2023, 954(1):95.
[19] Collinson G A, Frahm R A, Glocer A, et al. A survey of strong electric potential drops in the ionosphere of Venus[J]. Geophysical Research Letters, 2023, 50(18):e2023-GL104989.
[20] Cai Y H, Yue X N, Zhou X, et al. Simulated long-term evolution of the thermosphere during the HolocenePart 1:Neutral density and temperature[J]. Atmospheric Chemistry and Physics, 2023, 23(9):5009-5021.
[21] Zhou X, Yue X N, Cai Y H, et al. Simulated long-term evolution of the thermosphere during the Holocene-Part2:Circulation and solar tides[J]. Atmospheric Chemistry and Physics, 2023, 23(11):6383-6393.
[22] Pan Y X, Li J H. On the biospheric effects of geomagnetic reversals[J]. National Science Review, 2023, 10(6):nwad070.
[23] MacLennan E, Granvik M. Thermal decomposition as the activity driver of near-Earth asteroid(3200)Phaethon[J]. Nature Astronomy, 2023:1-9.
[24] Vida D, Brown P G, Devillepoix H A R, et al. Direct measurement of decimetre-sized rocky material in the Oort cloud[J]. Nature Astronomy, 2023, 7(3):318-329.
[25] Li G Z, Wu Z, Li Y, et al. The spectrum and orbit of a fireball producing mesospheric irregularity and implications for meteor mass deposition[J]. The Astrophysical Journal, 2023, 946(1):11.
[26] Dandouras I, Taylor M G G T, De Keyser J, et al. Space plasma physics science opportunities for the lunar orbital platform-Gateway[J]. Frontiers in Astronomy and Space Sciences, 2023, 10:1120302.
[27] Teolis B, Sarantos M, Schorghofer N, et al. Surface exospheric interactions[J]. Space Science Reviews, 2023,219(1):4.
[28] Berezhnoi A, Velikodsky Y I, Pakhomov Y V, et al. The surface of the Moon as a calibration source for Na and K observations of the lunar exosphere[J]. Planetary and Space Science, 2023, 228:105648.
[29] Leblanc F, Deborde R, Tramontina D, et al. On the origins of backscattered solar wind energetic neutral hydrogen from the Moon and Mercury[J]. Planetary and Space Science, 2023, 229:105660.
[30] Szabo P S, Poppe A R, Mutzke A, et al. Energetic neutral atom(ENA)emission characteristics at the moon and mercury from 3D regolith simulations of solar wind reflection[J]. Journal of Geophysical Research(Planets),2023, 128(9):e2023JE007911.
[31] Lou Y, Gu X, Cao X, et al. Statistical analysis of lunar 1Hz waves using ARTEMIS observations[J]. Astrophysical Journal, 2023, 943(1):17.
[32] Sreeraj T, Singh S V, Lakhina G S. Ion acoustic waves in lunar wake plasma[J]. Advances in Space Research,2023, 71(11):4604-4612.
[33] He H C, Ji J L, Zhang Y, et al. A solar wind-derived water reservoir on the Moon hosted by impact glass beads[J]. Nature Geoscience, 2023, 16:294-300.
[34] Liu Z H, He H Y, Li J N, et al. Measurement and uncertainty analysis of lunar soil water content via heating flux method[J]. Aerospace, 2023, 10(7):657.
[35] Li S, Poppe A R, Orlando T M, et al. Formation of lunar surface water associated with high-energy electrons in Earth's magnetotail[J]. Nature Astronomy, 2023, 7:1427-1435.
[36] Chakraborty M, Yadav V K, Kumar R. Two-stream instability generation in the lunar ionosphere[J]. Advances in Space Research, 2023, 71(6):2954-2966.
[37] Omidi N, Zhou X Y, Russell C T, et al. Interaction of interplanetary shocks with the moon:Hybrid simulations and ARTEMIS observations[J]. Journal of Geophysical Research:Space Physics, 2023, 128(6):5971.
[38] Nabatov A S, Zakharov A I, Efimov A I. Formation of a plasma layer during the passage of the moon through the magnetic ropes of the solar wind[J]. Solar System Research, 2023, 57(1):52-60.
[39] Nakagawa T, Takahashi F, Saito Y, et al. Sub-ion-gyro scale magnetic field compressions generated by the solar wind interaction with the moon[J]. Earth, Planets and Space, 2023, 75(1):60.
[40] Runov A, Angelopoulos V, Khurana K, et al. Properties of quiet magnetotail plasma sheet at lunar distances[J].Journal of Geophysical Research(Space Physics), 2023,128(11):e2023JA031908.
[41] Cao X, Halekas J, Haaland S, et al. Using machine learning to characterize solar wind driving of convection in the terrestrial magnetotail lobes[J]. Frontiers in Astronomy and Space Sciences, 2023, 10:1180410.
[42] Fu Y, Wang H Z, Zhang J, et al. Possible formation mechanism of lunar hematite[J]. Magnetochemistry,2023, 9(2):43.
[43] Liuzzo L, Poppe A R, Lee C O, et al. Unrestricted solar energetic particle access to the moon while within the terrestrial magnetotail[J]. Geophysical Research Letters,2023, 50(12):e2023GL103990.
[44] Friedrich M. Does the moon meddle with the lower ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 250:106119.
[45] Gorkavyi N, Krotkov N, Marshak A. Earth observations from the Moon's surface:Dependence on lunar libration[J]. Atmospheric Measurement Techniques, 2023, 16(6):1527-1537.
[46] Chen G Q, Guo H D, Wu W J, et al. Spatiotemporal characteristics of near-earth object monitoring from a moon-based station:Case from 1962 to 2020 in CNEOS[J]. Remote Sensing Letters, 2023, 14(4):423-432.
[47] Xiao C, He F, Shi Q Q, et al. Evidence for lunar tide effects in Earth's plasmasphere[J]. Nature Physics, 2023,19:486-491.
[48] Du A M, Ge Y S, Wang H P, et al. Ground magnetic survey on Mars from the Zhurong rover[J]. Nature Astronomy, 2023, 7:1037-1047.
[49] Zhang C, Rong Z J, Zhang L L, et al. Properties of flapping current sheet of the Martian magnetotail[J]. Journal of Geophysical Research(Space Physics), 2023, 128(4):e2022JA031232.
[50] Zhang C, Nilsson H, Ebihara Y, et al. Detection of magnetospheric ion drift patterns at Mars[J]. Nature Communications, 2023, 14:6866.
[51] Yigit E. Coupling and interactions across the Martian whole atmosphere system[J]. Nature Geoscience, 2023,16:123-132.
[52] Cao Y, Cui J, Liang W, et al. Characteristic timescales for the dayside martian ionosphere:Chemistry, diffusion,and magnetization[J]. The Astronomical Journal, 2023,166(6):264.
[53] Chen Y D, Liu L B, Le H J, et al. Evaluation for effects of variable Martian upper atmosphere on ionospheric peak electron density based on the MGS RO observation[J]. Icarus, 2023, 391:115364.
[54] He F, Fan K, Hughes A, et al. Martian proton aurora brightening reveals atmospheric ion loss intensifying[J].Geophysical Research Letters, 2023, 50(5):e2023GL10-2723.
[55] Fan K, Wei Y, Fraenz M, et al. Observations of a minimagnetosphere above the Martian crustal magnetic fields[J]. Geophysical Research Letters, 2023, 50(21):e2023-GL103999.
[56] Li G K, Lu H Y, Li Y, et al. Influence of crustal magnetic fields on horizontal plasma transport and ion escape on Mars[J]. The Astrophysical Journal, 2023, 957(2):92.
[57] Ma X, Tian A M, Guo R L, et al. Tianwen-1 and MAVEN observations of Martian oxygen ion plumes[J]. Icarus, 2023, 406:115758.
[58] Xu X J, Wang X, Zhou Z L, et al. Ion loss within a reconnection exhaust near Mars:MAVEN observations[J].The Astrophysical Journal, 2023, 955(1):41.
[59] Wang L, Huang C, Du A M, et al. Magnetic reconnection in the Martian magnetotail:Occurrence rate and impact on ion loss[J]. Geophysical Research Letters, 2023,50(18):e2023GL104996.
[60] Wang L, Huang C, Du A M, et al. Kelvin-helmholtz instability at Mars:In situ observations and kinetic simulations[J]. The Astrophysical Journal, 2023, 947(2):51.
[61] Sun W Y, Ma Y J, Russell C T, et al. 5-species MHD study of Martian proton loss and source[J]. Journal of Geophysical Research(Space Physics), 2023, 128(4):e2023JA031301.
[62] Zhang Q, Holmström M, Wang X D, et al. The influence of solar irradiation and solar wind conditions on heavy ion escape from Mars[J]. Journal of Geophysical Research:Space Physics, 2023, 128(10):essoar.168889946.
[63] Sun M Y, Hao G, Cui J, et al. Enhanced hydrogen escape on Mars during the 2018 global dust storm:Impact of horizontal wind field[J]. The Astrophysical Journal,2023, 953(1):71.
[64] Gu H, Wu X, Cui J. Photochemical escape of atomic C and N on Mars during the X8.2 solar flare on 10 September 2017[J]. Astronomy&Astrophysics, 2023, 672:A177.
[65] Lin H L, Xu R, Lin Y T, et al. In-flight calibration of near-infrared reflectance spectra measured by the Zhurong Mars rover[J]. Earth and Space Science, 2023, 10(2):e2022EA002624.
[66] Zhao Y Y S, Yu J, Wei G F, et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars[J]. National Science Review, 2023,10(6):nwad056.
[67] Lin H L, Lin Y T, Wei Y, et al. Mineralogical evidence of water activity in the northern Lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover[J].Science China Earth Sciences, 2023, 66(11):2463-2472.
[68] Xiao L, Huang J, Kusky T, et al. Evidence for marine sedimentary rocks in Utopia Planitia:Zhurong rover observations[J]. National Science Review, 2023, 10(9):nwad137.
[69] Qin X G, Ren X, Wang X, et al. Modern water at low latitudes on Mars:Potential evidence from dune surfaces[J]. Science Advances, 2023, 9(17):eadd8868.
[70] Wang J, Zhao J N, Xiao L, et al. Recent aqueous activity on Mars evidenced by transverse aeolian ridges in the Zhurong exploration region of Utopia Planitia[J]. Geophysical Research Letters, 2023, 50(6):e2022GL101650.
[71] Zhang Q, Liu D W, Ren X, et al. Dust deposition at Zhurong landing site from multispectral camera observations[J]. Geophysical Research Letters, 2023, 50(13):e2023-GL104676.
[72] Jiang C S, Jiang Y, Li H N, et al. Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission[J]. Scientific Reports, 2023, 13:3325.
[73] Vicente-Retortillo A, Martínez G M, Lemmon M T, et al.Dust lifting through surface albedo changes at jezero crater, Mars[J]. Journal of Geophysical Research(Planets),2023, 128(4):e2022JE007672.
[74] Wang H, Saidel M, Richardson M I, et al. Martian dust storm distribution and annual cycle from Mars daily global map observations[J]. Icarus, 2023, 394:115416.
[75] Mao W S, Fu X H, Wu Z C, et al. Solid-gas carbonate formation during dust events on Mars[J]. National Science Review, 2023, 10(4):nwac293.
[76] CailléV, Määttänen A, Spiga A, et al. Revisiting atmospheric features of Mars orbiter laser altimeter data using machine learning algorithmss[J]. Journal of Geophysical Research(Planets), 2023, 128(1):e2022JE007384.
[77] Zhong S B, Chen Z, Deng X H, et al. Study of the effect of Martian dust storms on ionospheric electron density based on physical-grid deep neural learning technology[J]. The Astrophysical Journal, 2023, 943(2):141.
[78] Li J, Li H Y, Ren X, et al. Eliminating massive Martian dust storms from images of Tianwen-1 via deep learning[J]. The Astronomical Journal, 2023, 165(2):54.
[79] 董理,普业,李艺苑,等.新一代火星大气模式GoPlanet-Mars V1的研制[J/OL].科学通报, 2023.[2023-12-15]. https://doi.org/10.1360/TB-2023-0699.
[80] Li L F, Chen Y, Hu S M, et al. A novel design for a dust-induced closed return Mars wind tunnel[J]. Planetary and Space Science, 2023, 235:105742.
[81] 戎昭金,魏勇,何飞,等,我国未来在轨监测火星沙尘暴的设想和方案[J].科学通报, 2023, 68(7):716-728.
[82] Samuel H, Drilleau M, Rivoldini A, et al. Geophysical evidence for an enriched molten silicate layer above Mars's core[J]. Nature, 2023, 622:712-717.
[83] Khan A, Huang D, Durán C, et al. Evidence for a liquid silicate layer atop the Martian core[J]. Nature, 2023,622:718-723.
[84] Le Maistre S, Rivoldini A, Caldiero A, et al. Spin state and deep interior structure of Mars from InSight radio tracking[J]. Nature, 2023, 619:733-737.
[85] Xu C Y, Jiang Y. Determining the moment of inertia of triaxial Mars with updated global gravity models[J].Earth and Planetary Physics, 2023, 7(6):615-619.
[86] Chen R N, Zhang L, Xu Y, et al. Martian soil as revealed by ground-penetrating radar at the Tianwen-1landing site[J]. Geology, 2023, 51(3):315-319.
[87] Zhang L, Li C, Zhang J H, et al. Buried palaeo-polygonal terrain detected underneath Utopia Planitia on Mars by the Zhurong radar[J]. Nature Astronomy, 2023:1-8.
[88] CavaliéT, Lunine J, Mousis O. A subsolar oxygen abundance or a radiative region deep in Jupiter revealed by thermochemical modelling[J]. Nature Astronomy, 2023,7:678-683.
[89] Mauduit E, Zarka P, Lamy L, et al. Drifting discrete Jovian radio bursts reveal acceleration processes related to Ganymede and the main aurora[J]. Nature Communications, 2023, 14:5981.
[90] Galanti E, Kaspi Y, Guillot T. The shape of Jupiter and Saturn based on atmospheric dynamics, radio occultations and gravity measurements[J]. Geophysical Research Letters, 2023, 50(6):EGU-3964.
[91] Chen J J, Zhang B Z, Lin D, et al. Prediction of axial asymmetry in Jovian magnetopause reconnection[J]. Geophysical Research Letters, 2023, 50(9):e2022GL102577.
[92] Damiano P A, Delamere P A, Kim E H, et al. Electron energization by inertial alfvén waves in density depleted flux tubes at Jupiter[J]. Geophysical Research Letters,2023, 50(5):e2022GL102467.
[93] Nichols J D, Allegrini F, Bagenal F, et al. Jovian magnetospheric injections observed by the Hubble space telescope and Juno[J]. Geophysical Research Letters, 2023,50(20):e2023GL105549.
[94] Sulaiman A H, Szalay J R, Clark G, et al. Poynting fluxes, field-aligned current densities, and the efficiency of the io-jupiter electrodynamic interaction[J]. Geophysical Research Letters, 2023, 50(10):e2023GL103456.
[95] Montgomery J, Ebert R W, Allegrini F, et al. Investigating the occurrence of kelvin-helmholtz instabilities at jupiter's dawn magnetopause[J]. Geophysical Research Letters, 2023, 50(14):324.
[96] Sarkango Y, Szalay J R, Poppe A R, et al. Proton equatorial pitch angle distributions in jupiter's inner magnetosphere[J]. Geophysical Research Letters, 2023, 50(11):e2023GL104374.
[97] Feng E H, Zhang B Z, Yao Z H, et al. Variation of the Jovian magnetopause under constant solar wind conditions:Significance of magnetodisc dynamics[J]. Geophysical Research Letters, 2023, 50(12):e2023GL104046.
[98] Menietti J D, Yoon P H, Averkamp T F, et al. Wave and particle analysis of Z-mode and O-mode emission in the Jovian inner magnetosphere[J]. Journal of Geophysical Research:Space Physics, 2023, 128(5):e2022JA03-1199.
[99] Wang R Y, Stallard T S, Melin H, et al. Asymmetric ionospheric jets in jupiter's aurora[J]. Journal of Geophysical Research(Space Physics), 2023, 128(12):e2023JA0-31861.
[100] Xu Y, Yao Z H, Ye S Y, et al. A possible unified picture for the connected recurrent magnetic dipolarization, quasi-periodic ENA enhancement, SKR low-frequency extension and narrowband emission at Saturn[J]. Journal of Geophysical Research:Space Physics,2023, 128(9):e2023JA031445.
[101] Long M, Cao X, Ni B, et al. Formation of electron butterfly pitch angle distributions in Saturn's magnetosphere due to scattering by equatorial ECH waves[J].Geophysical Research Letters, 2023, 50:e2023GL1053-18.
[102] Rossi C, Cianfarra P, Lucchetti A, et al. Deformation patterns of icy satellite crusts:Insights for tectonic balancing and fluid migration through structural analysis of terrestrial analogues[J]. Icarus, 2023, 404:115668.
[103] Wang Q, Fan S, Qi C. Grain growth of ice doped with soluble impurities[J]. EGUsphere, 2023:1-41.
Outlines

/