[1] Yan L M, He F, Yue X N, et al. The 8-year solar cycle during the maunder minimum[J]. AGU Advances, 2023, 4(5):e2023AV000964.
[2] Scharping N. Aurora records reveal shortened solar cycle during maunder minimum[J]. Eos, 2023, 104.
[3] Baker H. Strange anomaly in sun's solar cycle discovered in centuries-old texts from Korea[EB/OL].[2023-10-23].https://www.space.com/sun-solar-cycle-anomaly-discovered-korean-texts.
[4] Wang Y, Zhong J, Slavin J, et al. MESSENGER observations of standing whistler waves upstream of mercury's bow shock[J]. Geophysical Research Letters, 2023, 50(10):e2022GL102574.
[5] Chen Y W, Shue J H, Zhong J, et al. Anomalous response of mercury's magnetosphere to solar wind compression:Comparison to earth[J]. The Astrophysical Journal, 2023,957(1):26.
[6] Shao P, Ma Y H, Odstrcil D. Solar wind directional change triggering large-amplitude deflection of Mercury's Current sheet[J]. Astrophysics and Space Science, 2023,368(4):28.
[7] Zhong J, Lee L C, Slavin J A, et al. MESSENGER observations of reconnection in mercury's magnetotail under strong IMF forcing[J]. Journal of Geophysical Research:Space Physics, 2023, 128(2):e2022JA031134.
[8] Shao P, Ma Y H, Zeng G. MESSENGER observations of multiple magnetic energy releases during mercury's substorm[J]. The Astrophysical Journal, 2023, 953(1):110.
[9] 石振,戎昭金,魏勇.水星内磁层等离子体带及电流体系[J].地球物理学报, 2023, 66(6):2236-2251.
[10] Aizawa S, Harada Y, AndréN, et al. Direct evidence of substorm-related impulsive injections of electrons at Mercury[J]. Nature Communications, 2023, 14:4019.
[11] Xu S S, Frahm R A, Ma Y J, et al. Statistical mapping of magnetic topology at Venus[J]. Journal of Geophysical Research:Space Physics, 2023, 128(12):e2023JA0321-33.
[12] Stergiopoulou K, Jarvinen R, Andrews D J, et al. Solar orbiter data-model comparison in Venus'induced magnetotail[J]. Journal of Geophysical Research:Space Physics, 2023, 128(2):e2022JA031023.
[13] Rojas M S, Stenberg W G, Futaana Y, et al. Proton plasma asymmetries between Venus'quasi-perpendicular and quasi-parallel magnetosheaths[J]. Journal of Geophysical Research(Space Physics), 2023, 128(6):e2022-JA031149.
[14] Xu Q, Xie L H, Rong Z J, et al. The magnetic field clock angle departure in the Venusian magnetosheath and its response to IMF rotation[J]. Astronomy&Astrophysics, 2023, 677:A142.
[15] Dang T, Zhang B, Yan M, et al. A new tool for understanding the solar wind-venus interaction:Three-dimensional Multifluid MHD Model[J]. The Astrophysical Journal, 2023, 945(2):91.
[16] Xu Q, Xu X, Zuo P, et al. Solar control of the pickup ion plume in the dayside magnetosheath of Venus[J].Geophysical Research Letters, 2023, 50(4):e2022GL10-2401.
[17] Ma Y, Combi M R, Tenishev V, et al. The effects of the upper atmosphere and corona on the solar wind interaction with venus[J]. Journal of Geophysical Research:Space Physics, 2023, 128(4):e2022JA031239.
[18] Signoles C, Persson M, Futaana Y. et al. Influence of solar wind variations on the shapes of venus'plasma boundaries based on venus express observations[J]. The Astrophysical Journal, 2023, 954(1):95.
[19] Collinson G A, Frahm R A, Glocer A, et al. A survey of strong electric potential drops in the ionosphere of Venus[J]. Geophysical Research Letters, 2023, 50(18):e2023-GL104989.
[20] Cai Y H, Yue X N, Zhou X, et al. Simulated long-term evolution of the thermosphere during the HolocenePart 1:Neutral density and temperature[J]. Atmospheric Chemistry and Physics, 2023, 23(9):5009-5021.
[21] Zhou X, Yue X N, Cai Y H, et al. Simulated long-term evolution of the thermosphere during the Holocene-Part2:Circulation and solar tides[J]. Atmospheric Chemistry and Physics, 2023, 23(11):6383-6393.
[22] Pan Y X, Li J H. On the biospheric effects of geomagnetic reversals[J]. National Science Review, 2023, 10(6):nwad070.
[23] MacLennan E, Granvik M. Thermal decomposition as the activity driver of near-Earth asteroid(3200)Phaethon[J]. Nature Astronomy, 2023:1-9.
[24] Vida D, Brown P G, Devillepoix H A R, et al. Direct measurement of decimetre-sized rocky material in the Oort cloud[J]. Nature Astronomy, 2023, 7(3):318-329.
[25] Li G Z, Wu Z, Li Y, et al. The spectrum and orbit of a fireball producing mesospheric irregularity and implications for meteor mass deposition[J]. The Astrophysical Journal, 2023, 946(1):11.
[26] Dandouras I, Taylor M G G T, De Keyser J, et al. Space plasma physics science opportunities for the lunar orbital platform-Gateway[J]. Frontiers in Astronomy and Space Sciences, 2023, 10:1120302.
[27] Teolis B, Sarantos M, Schorghofer N, et al. Surface exospheric interactions[J]. Space Science Reviews, 2023,219(1):4.
[28] Berezhnoi A, Velikodsky Y I, Pakhomov Y V, et al. The surface of the Moon as a calibration source for Na and K observations of the lunar exosphere[J]. Planetary and Space Science, 2023, 228:105648.
[29] Leblanc F, Deborde R, Tramontina D, et al. On the origins of backscattered solar wind energetic neutral hydrogen from the Moon and Mercury[J]. Planetary and Space Science, 2023, 229:105660.
[30] Szabo P S, Poppe A R, Mutzke A, et al. Energetic neutral atom(ENA)emission characteristics at the moon and mercury from 3D regolith simulations of solar wind reflection[J]. Journal of Geophysical Research(Planets),2023, 128(9):e2023JE007911.
[31] Lou Y, Gu X, Cao X, et al. Statistical analysis of lunar 1Hz waves using ARTEMIS observations[J]. Astrophysical Journal, 2023, 943(1):17.
[32] Sreeraj T, Singh S V, Lakhina G S. Ion acoustic waves in lunar wake plasma[J]. Advances in Space Research,2023, 71(11):4604-4612.
[33] He H C, Ji J L, Zhang Y, et al. A solar wind-derived water reservoir on the Moon hosted by impact glass beads[J]. Nature Geoscience, 2023, 16:294-300.
[34] Liu Z H, He H Y, Li J N, et al. Measurement and uncertainty analysis of lunar soil water content via heating flux method[J]. Aerospace, 2023, 10(7):657.
[35] Li S, Poppe A R, Orlando T M, et al. Formation of lunar surface water associated with high-energy electrons in Earth's magnetotail[J]. Nature Astronomy, 2023, 7:1427-1435.
[36] Chakraborty M, Yadav V K, Kumar R. Two-stream instability generation in the lunar ionosphere[J]. Advances in Space Research, 2023, 71(6):2954-2966.
[37] Omidi N, Zhou X Y, Russell C T, et al. Interaction of interplanetary shocks with the moon:Hybrid simulations and ARTEMIS observations[J]. Journal of Geophysical Research:Space Physics, 2023, 128(6):5971.
[38] Nabatov A S, Zakharov A I, Efimov A I. Formation of a plasma layer during the passage of the moon through the magnetic ropes of the solar wind[J]. Solar System Research, 2023, 57(1):52-60.
[39] Nakagawa T, Takahashi F, Saito Y, et al. Sub-ion-gyro scale magnetic field compressions generated by the solar wind interaction with the moon[J]. Earth, Planets and Space, 2023, 75(1):60.
[40] Runov A, Angelopoulos V, Khurana K, et al. Properties of quiet magnetotail plasma sheet at lunar distances[J].Journal of Geophysical Research(Space Physics), 2023,128(11):e2023JA031908.
[41] Cao X, Halekas J, Haaland S, et al. Using machine learning to characterize solar wind driving of convection in the terrestrial magnetotail lobes[J]. Frontiers in Astronomy and Space Sciences, 2023, 10:1180410.
[42] Fu Y, Wang H Z, Zhang J, et al. Possible formation mechanism of lunar hematite[J]. Magnetochemistry,2023, 9(2):43.
[43] Liuzzo L, Poppe A R, Lee C O, et al. Unrestricted solar energetic particle access to the moon while within the terrestrial magnetotail[J]. Geophysical Research Letters,2023, 50(12):e2023GL103990.
[44] Friedrich M. Does the moon meddle with the lower ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 250:106119.
[45] Gorkavyi N, Krotkov N, Marshak A. Earth observations from the Moon's surface:Dependence on lunar libration[J]. Atmospheric Measurement Techniques, 2023, 16(6):1527-1537.
[46] Chen G Q, Guo H D, Wu W J, et al. Spatiotemporal characteristics of near-earth object monitoring from a moon-based station:Case from 1962 to 2020 in CNEOS[J]. Remote Sensing Letters, 2023, 14(4):423-432.
[47] Xiao C, He F, Shi Q Q, et al. Evidence for lunar tide effects in Earth's plasmasphere[J]. Nature Physics, 2023,19:486-491.
[48] Du A M, Ge Y S, Wang H P, et al. Ground magnetic survey on Mars from the Zhurong rover[J]. Nature Astronomy, 2023, 7:1037-1047.
[49] Zhang C, Rong Z J, Zhang L L, et al. Properties of flapping current sheet of the Martian magnetotail[J]. Journal of Geophysical Research(Space Physics), 2023, 128(4):e2022JA031232.
[50] Zhang C, Nilsson H, Ebihara Y, et al. Detection of magnetospheric ion drift patterns at Mars[J]. Nature Communications, 2023, 14:6866.
[51] Yigit E. Coupling and interactions across the Martian whole atmosphere system[J]. Nature Geoscience, 2023,16:123-132.
[52] Cao Y, Cui J, Liang W, et al. Characteristic timescales for the dayside martian ionosphere:Chemistry, diffusion,and magnetization[J]. The Astronomical Journal, 2023,166(6):264.
[53] Chen Y D, Liu L B, Le H J, et al. Evaluation for effects of variable Martian upper atmosphere on ionospheric peak electron density based on the MGS RO observation[J]. Icarus, 2023, 391:115364.
[54] He F, Fan K, Hughes A, et al. Martian proton aurora brightening reveals atmospheric ion loss intensifying[J].Geophysical Research Letters, 2023, 50(5):e2023GL10-2723.
[55] Fan K, Wei Y, Fraenz M, et al. Observations of a minimagnetosphere above the Martian crustal magnetic fields[J]. Geophysical Research Letters, 2023, 50(21):e2023-GL103999.
[56] Li G K, Lu H Y, Li Y, et al. Influence of crustal magnetic fields on horizontal plasma transport and ion escape on Mars[J]. The Astrophysical Journal, 2023, 957(2):92.
[57] Ma X, Tian A M, Guo R L, et al. Tianwen-1 and MAVEN observations of Martian oxygen ion plumes[J]. Icarus, 2023, 406:115758.
[58] Xu X J, Wang X, Zhou Z L, et al. Ion loss within a reconnection exhaust near Mars:MAVEN observations[J].The Astrophysical Journal, 2023, 955(1):41.
[59] Wang L, Huang C, Du A M, et al. Magnetic reconnection in the Martian magnetotail:Occurrence rate and impact on ion loss[J]. Geophysical Research Letters, 2023,50(18):e2023GL104996.
[60] Wang L, Huang C, Du A M, et al. Kelvin-helmholtz instability at Mars:In situ observations and kinetic simulations[J]. The Astrophysical Journal, 2023, 947(2):51.
[61] Sun W Y, Ma Y J, Russell C T, et al. 5-species MHD study of Martian proton loss and source[J]. Journal of Geophysical Research(Space Physics), 2023, 128(4):e2023JA031301.
[62] Zhang Q, Holmström M, Wang X D, et al. The influence of solar irradiation and solar wind conditions on heavy ion escape from Mars[J]. Journal of Geophysical Research:Space Physics, 2023, 128(10):essoar.168889946.
[63] Sun M Y, Hao G, Cui J, et al. Enhanced hydrogen escape on Mars during the 2018 global dust storm:Impact of horizontal wind field[J]. The Astrophysical Journal,2023, 953(1):71.
[64] Gu H, Wu X, Cui J. Photochemical escape of atomic C and N on Mars during the X8.2 solar flare on 10 September 2017[J]. Astronomy&Astrophysics, 2023, 672:A177.
[65] Lin H L, Xu R, Lin Y T, et al. In-flight calibration of near-infrared reflectance spectra measured by the Zhurong Mars rover[J]. Earth and Space Science, 2023, 10(2):e2022EA002624.
[66] Zhao Y Y S, Yu J, Wei G F, et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars[J]. National Science Review, 2023,10(6):nwad056.
[67] Lin H L, Lin Y T, Wei Y, et al. Mineralogical evidence of water activity in the northern Lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover[J].Science China Earth Sciences, 2023, 66(11):2463-2472.
[68] Xiao L, Huang J, Kusky T, et al. Evidence for marine sedimentary rocks in Utopia Planitia:Zhurong rover observations[J]. National Science Review, 2023, 10(9):nwad137.
[69] Qin X G, Ren X, Wang X, et al. Modern water at low latitudes on Mars:Potential evidence from dune surfaces[J]. Science Advances, 2023, 9(17):eadd8868.
[70] Wang J, Zhao J N, Xiao L, et al. Recent aqueous activity on Mars evidenced by transverse aeolian ridges in the Zhurong exploration region of Utopia Planitia[J]. Geophysical Research Letters, 2023, 50(6):e2022GL101650.
[71] Zhang Q, Liu D W, Ren X, et al. Dust deposition at Zhurong landing site from multispectral camera observations[J]. Geophysical Research Letters, 2023, 50(13):e2023-GL104676.
[72] Jiang C S, Jiang Y, Li H N, et al. Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission[J]. Scientific Reports, 2023, 13:3325.
[73] Vicente-Retortillo A, Martínez G M, Lemmon M T, et al.Dust lifting through surface albedo changes at jezero crater, Mars[J]. Journal of Geophysical Research(Planets),2023, 128(4):e2022JE007672.
[74] Wang H, Saidel M, Richardson M I, et al. Martian dust storm distribution and annual cycle from Mars daily global map observations[J]. Icarus, 2023, 394:115416.
[75] Mao W S, Fu X H, Wu Z C, et al. Solid-gas carbonate formation during dust events on Mars[J]. National Science Review, 2023, 10(4):nwac293.
[76] CailléV, Määttänen A, Spiga A, et al. Revisiting atmospheric features of Mars orbiter laser altimeter data using machine learning algorithmss[J]. Journal of Geophysical Research(Planets), 2023, 128(1):e2022JE007384.
[77] Zhong S B, Chen Z, Deng X H, et al. Study of the effect of Martian dust storms on ionospheric electron density based on physical-grid deep neural learning technology[J]. The Astrophysical Journal, 2023, 943(2):141.
[78] Li J, Li H Y, Ren X, et al. Eliminating massive Martian dust storms from images of Tianwen-1 via deep learning[J]. The Astronomical Journal, 2023, 165(2):54.
[79] 董理,普业,李艺苑,等.新一代火星大气模式GoPlanet-Mars V1的研制[J/OL].科学通报, 2023.[2023-12-15]. https://doi.org/10.1360/TB-2023-0699.
[80] Li L F, Chen Y, Hu S M, et al. A novel design for a dust-induced closed return Mars wind tunnel[J]. Planetary and Space Science, 2023, 235:105742.
[81] 戎昭金,魏勇,何飞,等,我国未来在轨监测火星沙尘暴的设想和方案[J].科学通报, 2023, 68(7):716-728.
[82] Samuel H, Drilleau M, Rivoldini A, et al. Geophysical evidence for an enriched molten silicate layer above Mars's core[J]. Nature, 2023, 622:712-717.
[83] Khan A, Huang D, Durán C, et al. Evidence for a liquid silicate layer atop the Martian core[J]. Nature, 2023,622:718-723.
[84] Le Maistre S, Rivoldini A, Caldiero A, et al. Spin state and deep interior structure of Mars from InSight radio tracking[J]. Nature, 2023, 619:733-737.
[85] Xu C Y, Jiang Y. Determining the moment of inertia of triaxial Mars with updated global gravity models[J].Earth and Planetary Physics, 2023, 7(6):615-619.
[86] Chen R N, Zhang L, Xu Y, et al. Martian soil as revealed by ground-penetrating radar at the Tianwen-1landing site[J]. Geology, 2023, 51(3):315-319.
[87] Zhang L, Li C, Zhang J H, et al. Buried palaeo-polygonal terrain detected underneath Utopia Planitia on Mars by the Zhurong radar[J]. Nature Astronomy, 2023:1-8.
[88] CavaliéT, Lunine J, Mousis O. A subsolar oxygen abundance or a radiative region deep in Jupiter revealed by thermochemical modelling[J]. Nature Astronomy, 2023,7:678-683.
[89] Mauduit E, Zarka P, Lamy L, et al. Drifting discrete Jovian radio bursts reveal acceleration processes related to Ganymede and the main aurora[J]. Nature Communications, 2023, 14:5981.
[90] Galanti E, Kaspi Y, Guillot T. The shape of Jupiter and Saturn based on atmospheric dynamics, radio occultations and gravity measurements[J]. Geophysical Research Letters, 2023, 50(6):EGU-3964.
[91] Chen J J, Zhang B Z, Lin D, et al. Prediction of axial asymmetry in Jovian magnetopause reconnection[J]. Geophysical Research Letters, 2023, 50(9):e2022GL102577.
[92] Damiano P A, Delamere P A, Kim E H, et al. Electron energization by inertial alfvén waves in density depleted flux tubes at Jupiter[J]. Geophysical Research Letters,2023, 50(5):e2022GL102467.
[93] Nichols J D, Allegrini F, Bagenal F, et al. Jovian magnetospheric injections observed by the Hubble space telescope and Juno[J]. Geophysical Research Letters, 2023,50(20):e2023GL105549.
[94] Sulaiman A H, Szalay J R, Clark G, et al. Poynting fluxes, field-aligned current densities, and the efficiency of the io-jupiter electrodynamic interaction[J]. Geophysical Research Letters, 2023, 50(10):e2023GL103456.
[95] Montgomery J, Ebert R W, Allegrini F, et al. Investigating the occurrence of kelvin-helmholtz instabilities at jupiter's dawn magnetopause[J]. Geophysical Research Letters, 2023, 50(14):324.
[96] Sarkango Y, Szalay J R, Poppe A R, et al. Proton equatorial pitch angle distributions in jupiter's inner magnetosphere[J]. Geophysical Research Letters, 2023, 50(11):e2023GL104374.
[97] Feng E H, Zhang B Z, Yao Z H, et al. Variation of the Jovian magnetopause under constant solar wind conditions:Significance of magnetodisc dynamics[J]. Geophysical Research Letters, 2023, 50(12):e2023GL104046.
[98] Menietti J D, Yoon P H, Averkamp T F, et al. Wave and particle analysis of Z-mode and O-mode emission in the Jovian inner magnetosphere[J]. Journal of Geophysical Research:Space Physics, 2023, 128(5):e2022JA03-1199.
[99] Wang R Y, Stallard T S, Melin H, et al. Asymmetric ionospheric jets in jupiter's aurora[J]. Journal of Geophysical Research(Space Physics), 2023, 128(12):e2023JA0-31861.
[100] Xu Y, Yao Z H, Ye S Y, et al. A possible unified picture for the connected recurrent magnetic dipolarization, quasi-periodic ENA enhancement, SKR low-frequency extension and narrowband emission at Saturn[J]. Journal of Geophysical Research:Space Physics,2023, 128(9):e2023JA031445.
[101] Long M, Cao X, Ni B, et al. Formation of electron butterfly pitch angle distributions in Saturn's magnetosphere due to scattering by equatorial ECH waves[J].Geophysical Research Letters, 2023, 50:e2023GL1053-18.
[102] Rossi C, Cianfarra P, Lucchetti A, et al. Deformation patterns of icy satellite crusts:Insights for tectonic balancing and fluid migration through structural analysis of terrestrial analogues[J]. Icarus, 2023, 404:115668.
[103] Wang Q, Fan S, Qi C. Grain growth of ice doped with soluble impurities[J]. EGUsphere, 2023:1-41.