Reviews

Shape memory alloys and their applications in non-energetic separating attachment: A review

  • WU Xiaojuan ,
  • CHEN Wenlong ,
  • ZHANG Xiaobing ,
  • LIU Lijuan ,
  • CHEN Xiaosong ,
  • SUO Liang
Expand
  • Shaanxi Applied Physics and Chemistry Research Institute, Xi'an 710061, China

Received date: 2022-07-01

  Revised date: 2022-08-11

  Online published: 2023-08-11

Abstract

This paper presents a review of the characteristics, types, manufacturing processes and performance control of shape memory alloys (SMAs). The current application in non-energy containing unlocking separation device is also reviewed. Basic working principles of SMA and current series of commonly used alloys are summarized. The main preparation processes of SMA are analyzed, especially the current application situation of spray casting, powder metallurgy and additive manufacturing in preparation of SMA materials. The current research status of SMA performance control based on typical processes such as alloying component design, heat treatment and plastic processing is introduced. Moreover, the current application status of SMA in non-energy containing unlocking separation device is discussed. Finally, key issues that need to be urgently addressed in institutional research and SMA material are prospected from a perspective of application and promotion.

Cite this article

WU Xiaojuan , CHEN Wenlong , ZHANG Xiaobing , LIU Lijuan , CHEN Xiaosong , SUO Liang . Shape memory alloys and their applications in non-energetic separating attachment: A review[J]. Science & Technology Review, 2023 , 41(13) : 89 -99 . DOI: 10.3981/j.issn.1000-7857.2023.13.009

References

[1] Saedi S, Toker G P, Raji H, et al. Shape memory effect in quaternary NiTiHfPd shape memory alloys beyond 200℃ [J]. Journal of Materials Engineering and Performance, 2022, doi: 10.1007/s11665-022-06742-3.
[2] 杨静宁, 唐健, 卢镜宇, 等. 功能梯度形状记忆合金梁的相变力学行为 [J]. 西 北 工 业 大 学 学 报 , 2021, 39(6): 1395-1403.
[3] Olander A. An electrochemical investitaion of cadmium-gold alloy[J]. Journal of the American Chemical Society, 1932, 54(10): 3819-3833.
[4] Huang Y H, Hsieh W Z, Lee P T, et al. Reaction of Au/Pd/Cu and Au/Pd/Au/Cu multilayers with Sn-Ag-Cu alloy[J]. Surface and Coatings Technology, 2019, 358: 753-761.
[5] Mohammed S S, Kok M, Qader I N, et al. Influence of Ta additive into Cu84−xAl13Ni3 (wt%) shape memory alloy produced by induction melting[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44(4): 1167-1175.
[6] Collazo A, Figueroa R, Mariño-Martínez C, et al. Microstructure and thermomechanical characterization of Fe-28Mn-6Si-5Cr shape memory alloy[J]. Metals, 2021, 11(4): 649.
[7] 许博, 王颖, 张萌, 等 . Nb 合金化对电弧增材制造 NiTi基形状记忆合金的影响[J]. 焊接学报, 2021, 42(8): 1-7.
[8] 张小勇, 闫晓军, 杨巧龙 . 形状记忆合金分瓣螺母空间解锁机构的设计与试验研究[J]. 机械工程学报, 2010, 46(17): 145-150.
[9] 汤林, 杨树涛, 林鑫, 等. 中小型航天器爆炸螺栓解锁冲击响应特性[J]. 兵工学报, 2021, 42(增刊1): 40-45.
[10] 杨传成, 马利, 王经东, 等 . 运载火箭级间分离爆炸螺栓装配方法[J]. 质量与可靠性, 2018(2): 13-15.
[11] 陈炎, 金伟, 王用岩, 等 . 爆炸螺栓分离对热防护系统冲击响应分析[J]. 装备环境工程, 2018, 15(9): 21-25.
[12] Karami M, Chen X. Nanomechanics of shape memory al-loys[J]. Materials Today Advances, 2021, 10: 100141.
[13] 李启泉, 马悦辉, 李岩 . Ni-Ti-Zr 合金组织、相变与形状记忆性能[J]. 铸造, 2019, 68(11): 1204-1209.
[14] 杨建楠, 黄彬, 谷小军, 等 . 形状记忆合金力学行为与应用综述[J]. 固体力学学报, 2021, 42(4): 345-375.
[15] Mehrpouya M, Gisario A, Elahinia M. Laser welding of NiTi shape memory alloy: A review[J]. Journal of Manu-facturing Processes, 2018, 31: 162-186.
[16] Elsayed A, Umeda J, Kondoh K. Effect of quenching media on the properties of TiNi shape memory alloys fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2020, 842: 155931.
[17] Saghaian S M, Karaca H E, Tobe H, et al. Effects of Ni content on the shape memory properties and microstruc-ture of Ni-rich NiTi-20Hf alloys[J]. Smart Materials and Structures, 2016, 25(9): 95029.
[18] Li H, Meng X, Cai W. Shape memory behaviors in a Ti50Ni33.5Cu12.5Pd4 alloy with near-zero thermal hysteresis[J]. Journal of Alloys and Compounds, 2018, 765: 166-170.
[19] Chang S, Kao W, Hsiao K, et al. High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high-entropy alloy[J]. Journal of Materials Research and Technology, 2021, 14: 1235-1242.
[20] Gao W, Yi X, Sun B, et al. Microstructural evolution of martensite during deformation in Zr50Cu50 shape memory alloy[J]. Acta Materialia, 2017, 132: 405-415.
[21] Zhang X, Cui T, Zhang X, et al. Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys[J]. Journal of Alloys and Compounds, 2021, 858: 157685.
[22] Guniputi B N, Murigendrappa S M. Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy[J]. Materials Science and Engineering: A, 2018, 737: 245-252.
[23] Yang S, Zhang F, Wu J, et al. Microstructure characterization, stress-strain behavior, superelasticity and shape
memory effect of Cu-Al-Mn-Cr shape memory alloys[J]. Journal of Materials Science, 2017, 52(10): 5917-5927.
[24] Singh R K, Murigendrappa S M, Kattimani S. Investigation on properties of shape memory alloy wire of Cu-AlBe doped with zirconium[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 7260-7269.
[25] Yang C, Lin H, Lin K. Improvement of shape memory effect in Fe-Mn-Si alloy by slight tantalum addition[J]. Materials Science and Engineering: A, 2009, 518(1/2):139-143.
[26] 姚聪, 李瑞迪, 袁铁锤, 等. 激光送粉增材制造Fe-MnSi基形状记忆合金组织与性能[J]. 中南大学学报(自然科学版), 2020, 51(11): 3081-3087.
[27] Wang G, Peng H, Sun P, et al. Effect of titanium addition on shape memory effect and recovery stress of trainingfree cast Fe-Mn-Si-Cr-Ni shape memory alloys[J]. Materials Science and Engineering: A, 2016, 657: 339-346.
[28] Peng H, Yong L, Wang S, et al. Role of annealing in improving shape memory effect of as-cast Fe-Mn-Si-Cr-Ni shape memory alloys[J]. Metallurgical and Materials Transactions: A, 2019, 50(7): 3070-3079.
[29] Callaway J D, Hamilton R F, Sehitoglu H, et al. Shape memory and martensite deformation response of Ni2MnGa[J]. Smart Materials and Structures, 2007, 16: S108-S114.
[30] 魏佳欣, 张欣 . 定向凝固 Ni-Mn-Ga-Gd 高温记忆合金的双程形状记忆效应[J]. 天津理工大学学报, 2020, 36(3): 49-52.
[31] 杨军, 郭芝斌, 王垚, 等. 快速凝固对Fe-Mn-Si系合金形状记忆效应及耐腐蚀性能的影响[J]. 材料热处理学报, 2015, 36(8): 44-48.
[32] Yang J, Wang Q Z, Yin F X, et al. Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy[J]. Materials Science and Engineering: A, 2016, 664: 215-220.
[33] Kim W, Argento A, Mohanty P S. Damping characteristics of a spray-deposited shape memory alloy beam[J].Journal of Sound and Vibration, 2014, 333(15): 3356-3366.
[34] Cava R D, Bolfarini C, Kiminami C S, et al. Spray forming of Cu-11.85Al-3.2Ni-3Mn (wt%) shape memory alloy[J]. Journal of Alloys and Compounds, 2014, 615: S602-S606.
[35] Soba S, Tanabe Y, Yonezawa T, et al. Effect of shape memory heat treatment on microstructures and mechanical properties of powder metallurgy tini shape memory alloy[J]. Materials Transactions, 2018, 59(5): 805-810.
[36] Ibrahim M K, Hamzah E, Saud S N, et al. Powder metallurgy fabrication of porous 51(at.%)Ni-Ti shape memory alloys for biomedical applications[J]. Shape Memory and Superelasticity, 2018, 4(2): 327-336.
[37] Ma X, Wang H, Xie H, et al. Engineering the porosity and superelastic behaviors of NiTi alloys prepared by an electro-assisted powder metallurgical route in molten salts[J]. Journal of Alloys and Compounds, 2019, 794: 455-464.
[38] Ibrahim M K, Saud S N, Hamzah E, et al. Role of Ag addition on microstructure, mechanical properties, corrosion behavior and biocompatibility of porous Ti-30 at% Ta shape memory alloys[J]. Journal of Central South University, 2020, 27(11): 3175-3187.
[39] Pricop B, Söyler A U, özkal B, et al. Powder metallurgy: An alternative for FeMnSiCrNi shape memory alloys processing[J]. Frontiers in Materials, 2020, 7: 247.
[40] Alagha A N, Hussain S, Zaki W. Additive manufacturing of shape memory alloys: A review with emphasis on powder bed systems[J]. Materials & Design, 2021, 204: 109654.
[41] 邓怀波, 陈玉华, 李树寒, 等 . NiTi 形状记忆合金激光增材制造研究进展[J]. 稀有金属材料与工程, 2019, 48(12): 4119-4130.
[42] Babacan N, Pauly S, Gustmann T. Laser powder bed fusion of a superelastic Cu-Al-Mn shape memory alloy[J]. Materials & Design, 2021, 203: 109625.
[43] Toker G P, Nematollahi M, Saghaian S E, et al. Shape memory behavior of NiTiHf alloys fabricated by selective laser melting[J]. Scripta Materialia, 2020, 178: 361-365.
[44] 余春风, 胡永俊, 卢冰文, 等 . 扫描间距对激光选区熔化 NiTi 形状记忆合金相变行为及力学性能的影响[J].激光与光电子学进展, 2021, 58(19): 1-10.
[45] Gera D, Santos J, Kiminami C S, et al. Comparison of Cu-Al-Ni-Mn-Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3322-3332.
[46] Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215.
[47] Zhang Q, Xu P, Zha G, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079.
[48] Liu C, Xu P, Pang C, et al. Phase transformation in Fe-Mn-Si SMA/WC composite coating developed by laser cladding[J]. Materials Chemistry and Physics, 2021, 267: 124595.
[49] 陈朝霞, 彭文屹. Co含量对Fe-30Ni-xCo-10.5Al-3Nb-0.05B形状记忆合金组织与伪弹性的影响[J]. 热加工工艺, 2020, 49(14): 107-110.
[50] Jiang H, Wang C, Xu W, et al. Alloying effects of Ga on the Co-V-Si high-temperature shape memory alloys[J].Materials & Design, 2017, 116: 300-308.
[51] 李维雅, 赵春旺 . La 掺杂对 Ni50Ti50 形状记忆合金力学性能的影响[J]. 内蒙古工业大学学报, 2021, 40(3): 199-204.
[52] Guniputi B N, Murigendrappa S M. Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy[J]. Materials Science and Engineering: A, 2018, 737:245-252.
[53] 叶俊杰, 贺志荣, 张坤刚, 等 . 时效对 Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[54] Li M, Liu J, Yan S, et al. Effect of aging treatment on damping capacity in Cu-Al-Mn shape memory alloy[J]. Journal of Alloys and Compounds. 2020, 821: 153213.
[55] 冯辉, 贺志荣, 王芳, 等 . 退火温度对 Ti-51.1Ni形状记忆合金超弹性的影响[J]. 金属热处理, 2019, 44(3): 120-123.
[56] Haidar M A, Saud S N, Hamzah E. Microstructure, mechanical properties, and shape memory effect of annealed Cu-Al-Ni-xCo shape memory alloys[J]. Metallography, Microstructure, and Analysis, 2017, 7(1): 57-64.
[57] Kim Y S, Choi E, Kim W J. Characterization of the microstructures and the shape memory properties of the Fe-Mn-Si-Cr-Ni-C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing[J]. Materials Characterization, 2018, 136: 12-19.
[58] Babacan N, Bilal M, Hayrettin C, et al. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy[J]. Acta Materialia, 2018, 157: 228-244.
[59] 王广春, 刘闪, 朱杰, 等 . 形状记忆合金形变细晶方法及其研究进展[J]. 自动化与仪器仪表, 2019(9): 87-91.
[60] Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718[J]. Materials Science and Engineering: A, 2021, 810: 141029.
[61] Li X, Chen H, Guo W, et al. Improved superelastic stability of NiTi shape memory alloys through surface nano-crystallization followed by low temperature aging treatment[J]. Intermetallics, 2021, 131: 107114.
[62] Takeda K. Enhancement of fatigue properties in sensor element by surface modification[J]. Sensors and Materials, 2020, 32(8): 2851.
[63] Ye C, Suslov S, Fei X, et al. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing[J]. Acta Materialia, 2011, 59(19): 7219-7227.
[64] Wang H, Pöhl F, Yan K, et al. Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy[J]. Applied Surface Science. 2019, 471: 869-877.
[65] Yoo Y I, Jeong J W, Lim J H, et al. Development of a non-explosive release actuator using shape memory alloy wire[J]. Review of Scientific Instruments, 2013, 84(1): 15005.
[66] Glücksberg A, Soul H, Yawny A. Releasing systems for aerospace industry based upon shape memory alloys: Characterization of materials for actuators[J]. Matéria (Rio de Janeiro), 2018, doi: 10.1590/S1517-707620180-002.0328.
[67] Pan X, Yue H, Tian Y, et al. A shape memory alloy actuated release device using non-self-locking thread[J]. Review of Scientific Instruments, 2021, 92(11): 115107.
[68] 刘颖, 杨巧龙, 闫泽红, 等 . 一种形状记忆合金压紧释放装置设计与试验[J]. 航天器工程, 2016, 25(3): 40-44.
Outlines

/