Reviews

Advances in software defined network security research and key technologies

  • ZHAI Yahong ,
  • CUI Junwei
Expand
  • College of Electrical and Information Engineering, Hubei University of Automobile Technology, Shiyan 442002, China

Received date: 2022-09-21

  Revised date: 2022-10-13

  Online published: 2023-08-11

Abstract

Software-defined networking(SDN) is a new network architecture that simplifies the development of new applications and services through a centralized software-oriented management approach and has become a research hotspot for the next-generation Internet. To address the security issues in SDN, this paper reviews the existing solutions in terms of the 3-layer architecture of SDN and analyzes the technical challenges faced by SDN security. In particular, it firstly introduces the definition of SDN and the 3-layer architecture then reviews the research advances on security related to SDN. Next, it summarises the security issues and solutions to the application layer, control layer and data layer, respectively. Finally, it provides an outlook on the challenges that SDN security future research may encounter.

Cite this article

ZHAI Yahong , CUI Junwei . Advances in software defined network security research and key technologies[J]. Science & Technology Review, 2023 , 41(13) : 76 -88 . DOI: 10.3981/j.issn.1000-7857.2023.13.008

References

[1] 强奇, 武刚, 黄开枝, 等 . 5G 安全技术研究与标准进展[J]. 中国科学: 信息科学, 2021, 51(3): 347-366.
[2] 付永红, 毕军, 张克尧, 等. 软件定义网络可扩展性研究综述[J]. 通信学报, 2017, 38(7): 141-154.
[3] 池亚平, 莫崇维, 杨垠坦, 等. 面向软件定义网络架构的入侵检测模型设计与实现[J]. 计算机应用, 2020, 40(1): 116-122.
[4] 岳猛, 王怀远, 吴志军, 等 . 云计算中 DDoS 攻防技术研究综述[J]. 计算机学报, 2020, 43(12): 2315-2336.
[5] 陈兴蜀, 滑强, 王毅桐, 等 . 云环境下 SDN 网络低速率DDoS攻击的研究[J]. 通信学报, 2019, 40(6): 210-222.
[6] 董仕 . 软件定义网络安全问题研究综述[J]. 计算机科学, 2021, 48(3): 295-306.
[7] Ahmad I, Namal S, Ylianttila M, et al. Security in software defined networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2317-2346.
[8] Kreutz D, Ramos F M V, Esteves Verissimo P, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14-76.
[9] Cox J H, Chung J, Donovan S, et al. Advancing software-defined networks: A survey[J]. IEEE Access, 2017, 5: 25487-25526.
[10] Khan S, Gani A, Abdul Wahab A W, et al. Topology discovery in software defined networks: Threats, taxonomy, and state-of-the-art[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 303-324.
[11] 黄颖祺, 张宏斌, 卢赓, 等 . 软件定义网络的安全问题及对策研究[J]. 信息安全研究, 2020, 6(3): 202-211.
[12] Han T, Jan S R U, Tan Z Y, et al. A comprehensive survey of security threats and their mitigation techniques for next-generation SDN controllers[J]. Concurrency and Computation: Practice and Experience, 2020, 32(16): e5300.
[13] 徐玉华, 孙知信 . 软件定义网络中的异常流量检测研究进展[J]. 软件学报, 2020, 31(1): 183-207.
[14] 易芝玲, 崔春风, 韩双锋, 等 . 5G蜂窝物联网关键技术分析[J]. 北京邮电大学学报, 2018, 41(5): 20-25.
[15] Ahmad S, Mir A H. Scalability, consistency, reliability and security in SDN controllers: A survey of diverse SDN controllers[J].Journal of Network and Systems Management, 2020, 29(1): 1-59.
[16] Murillo A F, Rueda S J, Morales L V, et al. SDN and NFV security: Challenges for integrated solutions[M]//Computer Communications and Networks. Cham: Springer International Publishing, 2017: 75-101.
[17] 李可欣, 王兴伟, 易波, 等. 智能软件定义网络[J]. 软件学报, 2021, 32(1): 118-136.
[18] Artmann D, Khondoker R. Security analysis of SDN WiFi applications[M]//SDN and NFV Security. Cham: Springer International Publishing, 2018: 57-71.
[19] Bräuning M, Khondoker R. Analysis of SDN applications for smart grid infrastructures[M]//SDN and NFV Security. Cham: Springer International Publishing, 2018: 99-110.
[20] Chikhale A, Khondoker R. Security analysis of SDN cloud applications[M]//SDN and NFV Security. Cham: Springer International Publishing, 2018: 19-38.
[21] Jain R, Khondoker R. Security analysis of SDN WAN applications—B4 and IWAN[M]// SDN and NFV Security. Cham: Springer International Publishing, 2018: 111-127.
[22] Lee C, Yoon C, Shin S, et al. INDAGO: A new framework for detecting malicious SDN applications[C]//2018 IEEE 26th International Conference on Network Protocols. Piscataway: IEEE Press, 2013: 220-230.
[23] Lee C, Shin S. SHIELD: An automated framework for static analysis of SDN applications[C]//Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. New York: ACM, 2016: 29-34.
[24] Durairajan R, Sommers J, Barford P. Controller-agnostic SDN debugging[C]//Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies. New York: ACM, 2014: 227-234.
[25] Li Y H, Wang Z L, Yao J Y, et al. MSAID: Automated detection of interference in multiple SDN applications[J]. Computer Networks, 2019, 153: 49-62.
[26] Hu T, Yi P, Hu Y X, et al. SAIDE: Efficient application interference detection and elimination in SDN[J]. Computer Networks, 2020, 183: 107619.
[27] Ujcich B E, Jero S, Edmundson A, et al. Cross-app poisoning in software-defined networking[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 648-663.
[28] Chang R, Lin Z W, Sun Y, et al. MD-UCON: A multidomain access control model for SDN northbound interfaces[J]. Journal of Physics: Conference Series, 2019, 1187(3): 032091.
[29] 祝现威, 常朝稳, 朱智强, 等 . 基于身份属性的 SDN 控制转发方法[J]. 通信学报, 2019, 40(11): 1-18.
[30] 范广宇, 王兴伟, 贾杰, 等 . SDN 应用平面与控制平面安全交互方法[J]. 信息网络安全, 2021, 21(6): 70-79.
[31] Tseng Y, Pattaranantakul M, He R, et al. Controller DAC: Securing SDN controller with dynamic access control[C]//2017 IEEE International Conference on Communications. Piscataway: IEEE Press, 2017: 1-6.
[32] Padekar H, Park Y, Hu H X, et al. Enabling dynamic access control for controller applications in software-defined networks[C]// Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies.New York: ACM, 2016: 51-61.
[33] Toshniwal B, Joshi K D, Shrivastava P, et al. BEAM: Behavior-based access control mechanism for SDN applications[C]//2019 28th International Conference on Computer Communication and Networks (ICCCN). Piscataway: IEEE Press, 2019: 1-2.
[34] Tseng Y, Nait-Abdesselam F, Khokhar A. SENAD: Securing network application deployment in software defined networks[C]//2018 IEEE International Conference on Communications. Piscataway: IEEE Press, 2018: 1-6.
[35] Cui H Y, Chen Z M, Yu L F, et al. Authentication mechanism for network applications in SDN environments[C]//2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC). Piscataway: IEEE Press, 2017: 1-5.
[36] Kim G, An J, Kim K. A study on authentication mechanism in SEaaS for SDN[C]//Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. New York: ACM, 2017: 1-6.
[37] Banse C, Rangarajan S. A secure northbound interface for SDN applications[C]//2015 IEEE Trustcom/BigDataSE/ISPA. Piscataway: IEEE Press, 2015: 834-839.
[38] Tseng Y, Zhang Z H, Naït-Abdesselam F. ControllerSEPA: A security-enhancing SDN controller plug-in for OpenFlow applications[C]//2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). Piscataway: IEEE Press, 2016: 268-273.
[39] Natanzi S B H, Majma M R. Secure northbound interface for SDN applications with NTRU public key infrastructure[C]//2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation. Piscataway: IEEE Press, 2017: 452-458.
[40] Hu T, Zhang Z, Yi P, et al. SEAPP: A secure application management framework based on REST API access control in SDN-enabled cloud environment[J]. Journal of Parallel and Distributed Computing, 2021, 147: 108-123.
[41] 徐明迪, 高杨, 崔峰. 基于SDN的分布式欺骗防御系统[J]. 通信学报, 2018, 39(增刊2): 54-60.
[42] 周启钊, 于俊清, 李冬 . SDN 控制层泛洪防御机制研究:检测与缓解[J]. 通信学报, 2021, 42(11): 41-53.
[43] 柳林, 周建涛 . 软件定义网络控制平面的研究综述[J].计算机科学, 2017, 44(2): 75-81.
[44] 李军飞, 兰巨龙, 胡宇翔, 等 . SDN 多控制器一致性的量化研究[J]. 通信学报, 2016, 37(6): 86-93.
[45] Macedo R, De Castro R, Santos A, et al. Self-organized SDN controller cluster conformations against DDoS attacks effects[C]//2016 IEEE Global Communications Conference. Piscataway: IEEE Press, 2016: 1-6.
[46] Yu H S, Qi H, Li K Q. WECAN: An efficient west-east control associated network for large-scale SDN systems [J].Mobile Networks and Applications, 2020, 25(1): 114-124.
[47] Benamrane F, Ben Mamoun M, Benaini R. An East-West interface for distributed SDN control plane: Implementation and evaluation[J]. Computers & Electrical Engineering, 2017, 57: 162-175.
[48] Lam J H, Lee S G, Lee H J, et al. Securing distributed SDN with IBC[C]//2015 Seventh International Conference on Ubiquitous and Future Networks. Piscataway: IEEE Press, 2015: 921-925.
[49] Hashemi Natanzi S B, Majma M R. Secure distributed controllers in SDN based on ECC public key infrastructure[C]//2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). Piscataway: IEEE Press, 2017: 1-5.
[50] Khraisat A, Gondal I, Vamplew P, et al. Survey of intrusion detection systems: Techniques, datasets and challenges[J]. Cybersecurity, 2019, 2(1): 1-22.
[51] Song C, Park Y, Golani K, et al. Machine-learning based threat-aware system in software defined networks[C]//2017 26th International Conference on Computer Communication and Networks (ICCCN). Piscataway: IEEE Press, 2017: 1-9.
[52] Garg S, Kaur K, Kumar N, et al. Hybrid deep-learning-based anomaly detection scheme for suspicious flow detection in SDN: A social multimedia perspective[J]. IEEE Transactions on Multimedia, 2019, 21(3): 566-578.
[53] Malik J, Akhunzada A, Bibi I, et al. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN[J]. IEEE Access, 2020, 8: 134695-134706.
[54] Tang T A, Mclernon D, Mhamdi L, et al. Intrusion detection in SDN-based networks: Deep recurrent neural network approach[M]//Deep Learning Applications for Cyber Security. Cham: Springer International Publishing, 2019: 175-195.
[55] Agborubere B, Sanchez-Velazquez E. OpenFlow commu⁃nications and TLS security in software-defined networks[C]//2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data. Piscataway: IEEE Press, 2017: 560-566.
[56] Benton K, Camp L J, Small C. OpenFlow vulnerability assessment[C]//Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. New York: ACM, 2013: 151-152.
[57] Lam J, Lee S G, Lee H J, et al. Securing SDN southbound and data plane communication with IBC[J]. Mobile Information Systems, 2016, 2016: 1-12.
[58] Marin E, Bucciol N, Conti M. An in-depth look into SDN topology discovery mechanisms: Novel attacks and practical countermeasures[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1101-1114.
[59] Nguyen T H, Yoo M. Attacks on host tracker in SDN controller: Investigation and prevention[C]//2016 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2016: 610-612.
[60] Nguyen T H, Yoo M. Analysis of link discovery service attacks in SDN controller[C]//2017 International Conference on Information Networking (ICOIN). Piscataway: IEEE Press, 2017: 259-261.
[61] Azzouni A, Boutaba R, Trang N T M, et al. sOFTDP: Secure and efficient topology discovery protocol for SDN[J]. arXiv preprint: 1705.04527, 2017.
[62] Hong S, Xu L, Wang H P, et al. Poisoning network visibility in software-defined networks: New attacks and countermeasures[C]//Proceedings 2015 Network and Distributed System Security Symposium. Reston: Internet Society, 2015: 8-11.
[63] 朱良根, 张玉清, 雷振甲. DoS攻击及其防范[J]. 计算机应用研究, 2004(7): 82-84.
[64] Skowyra R, Xu L, Gu G F, et al. Effective topology tampering attacks and defenses in software-defined networks[C]//2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Piscataway: IEEE Press, 2018: 374-385.
[65] Lin T Y, Wu J P, Hung P H, et al. Mitigating SYN flooding attack and ARP spoofing in SDN data plane[C]//2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). Piscataway: IEEE Press, 2020: 114-119.
[66] Akyildiz I F, Lee A, Wang P, et al. A roadmap for traffic engineering in SDN-OpenFlow networks[J]. Computer Networks, 2014, 71: 1-30.
[67] Dhawan M, Poddar R, Mahajan K, et al. Sphinx: Detecting security attacks in software-defined networks[C]//Network & Distributed System Security Symposium. San Diego, California, USA: 2015, 15: 8-11.
[68] Shrivastava P, Agarwal A, Kataoka K. Detection of topology poisoning by silent relay attacker in SDN[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2018: 792-794.
[69] Deng S H, Gao X, Lu Z B, et al. Packet injection attack and its defense in software-defined networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(3): 695-705.
[70] Alshra'A A S, Seitz J. Using INSPECTOR device to stop packet injection attack in SDN[J]. IEEE Communications Letters, 2019, 23(7): 1174-1177.
[71] Imran M, Durad M H, Khan F A, et al. DAISY: A detection and mitigation system against denial-of-service attacks in software-defined networks[J]. IEEE Systems Journal, 2020, 14(2): 1933-1944.
[72] 尚立, 陈明, 张磊, 等. SDN中基于机器学习的DDoS攻击协同防御[J]. 电力系统保护与控制, 2021, 49(16): 170-176.
[73] Huang X L, Du X J, Song B. An effective DDoS defense scheme for SDN[C]//2017 IEEE International Conference on Communications. Piscataway: IEEE Press, 2017: 1-6.
[74] Xu J F, Wang L M, Xu Z. An enhanced saturation attack and its mitigation mechanism in software-defined networking[J]. Computer Networks, 2020, 169: 107092.
[75] Wang T, Chen H C, Cheng G Z, et al. SDNManager: A safeguard architecture for SDN DoS attacks based on bandwidth prediction[J]. Security and Communication Networks, 2018, 2018: 1-16.
[76] Sahoo K S, Tripathy B K, Naik K, et al. An evolutionary SVM model for DDoS attack detection in software defined networks[J]. IEEE Access, 8: 132502-132513.
[77] Wu D, Li J, Das S K, et al. A novel distributed denialof-service attack detection scheme for software defined networking environments[C]//2018 IEEE International Conference on Communications. Piscataway: IEEE Press, 2018: 1-6.
[78] Shohani R B, Mostafavi S A. Introducing a new linear regression based method for early DDoS attack detection in SDN[C]//2020 6th International Conference on Web Research (ICWR). Piscataway: IEEE Press, 2020: 126-132.
[79] Badotra S, Panda S N. SNORT based early DDoS detection system using Opendaylight and open networking operating system in software defined networking[J]. Cluster Computing, 2021, 24(1): 501-513.
[80] Barki L, Shidling A, Meti N, et al. Detection of distributed denial of service attacks in software defined networks[C]//2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Piscataway: IEEE Press, 2016: 2576-2581.
[81] Li C H, Wu Y, Yuan X Y, et al. Detection and defense of DDoS attack-based on deep learning in OpenFlow-based SDN[J]. International Journal of Communication Systems, 2018, 31(5): e3497.
[82] Banitalebi Dehkordi A, Soltanaghaei M, Boroujeni F Z. The DDoS attacks detection through machine learning and statistical methods in SDN[J].The Journal of Supercomputing, 2021, 77(3): 2383-2415.
[83] Mohammadi R, Javidan R, Keshtgary M, et al. Practical extensions to countermeasure DoS attacks in software defined networking[C]//2017 IEEE Conference on Network Function Virtualization and Software Defined Networks. Piscataway: IEEE Press, 2017: 1-6.
[84] 林耘森箫, 毕军, 周禹, 等 . 基于 P4的可编程数据平面研究及其应用[J]. 计算机学报, 2019, 42(11): 2539-2560.
[85] Hwang R H, Nguyen V L, Lin P C. StateFit: A security framework for SDN programmable data plane model[C]//2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN). Piscataway: IEEE Press, 2018: 168-173.
[86] Lewis B, Broadbent M, Race N. P4ID: P4 enhanced intrusion detection[C]//2019 IEEE Conference on Network Function Virtualization and Software Defined Networks(NFV-SDN). Piscataway: IEEE Press, 2019: 1-4.
[87] da Silveira Ilha A, Lapolli A C, Marques J A, et al. Euclid: A fully In-network, P4-based approach for real-time DDoS attack detection and mitigation[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3121-3139.
[88] Hauser F, Schmidt M, Häberle M, et al. P4-MACsec: Dynamic topology monitoring and data layer protection with MACsec in P4-based SDN[J]. IEEE Access, 2020, 8: 58845-58858.
[89] Xing J R, Chen A, Ng T S E. Secure state migration in the data plane[C]// Proceedings of the Workshop on Secure Programmable Network Infrastructure. New York: ACM, 2020: 28-34.
[90] Xing J R, Wu W Q, Chen A. Architecting programmable data plane defenses into the network with FastFlex[C]//Proceedings of the 18th ACM Workshop on Hot Topics in Networks. New York: ACM, 2019: 161-169.
[91] Musumeci F, Ionata V, Paolucci F, et al. Machine-learning-assisted DDoS attack detection with P4 language[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2020: 1-6.
[92] Dargahi T, Caponi A, Ambrosin M, et al. A survey on the security of stateful SDN data planes[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1701-1725.
[93] Scholz D, Gallenmüller S, Stubbe H, et al. SYN flood defense in programmable data planes[C]//Proceedings of the 3rd P4 Workshop in Europe. New York: ACM, 2020: 13-20.
[94] Lee S, Woo S, Kim J, et al. AudiSDN: Automated detection of network policy inconsistencies in software-defined networks[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2020: 1788-1797.
[95] Lee S, Yoon C, Lee C, et al. Delta: A security assessment framework for software-defined networks[C]//The Network and Distributed System Security Symposium 2017. San Diego: NDSS , 2017: 1-5.
[96] Lee S, Kim J, Shin S, et al. Athena: A framework for scalable anomaly detection in software-defined networks[C]//2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Piscataway: IEEE Press, 2017: 249-260.
[97] Fawcett L, Scott-Hayward S, Broadbent M, et al. Tennison: A distributed SDN framework for scalable network security[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(12): 2805-2818.
[98] Karmakar K K, Varadharajan V, Tupakula U. On the design and implementation of a security architecture for software defined networks[C]//2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Piscataway: IEEE Press, 2016: 671-678.
[99] 唐菀, 张艳, 杨喜敏, 等.引入区块链的SDN-IoT网络安全:架构、方案与挑战[J]. 小型微型计算机系统, 2022, 43(10): 2179-2199.
[100] 陈何雄, 罗宇薇, 韦云凯, 等. 基于区块链的软件定义网络数据帧安全验证机制[J]. 计算机应用, 2021, doi: 51.1307.TP.20211202.2148.004.
[101] 黄韬, 刘江, 汪硕, 等. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150.
[102] Tupakula U. On the design and implementation of a security architecture for software defined networks[C]//2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems(HPCC/SmartCity/DSS). Piscataway: IEEE Press, 2016: 671-678.
[103] Sahoo K S, Puthal D. SDN-assisted DDoS defense framework for the internet of multimedia things[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2020, 16(3): 1-18.
Outlines

/