Driven by the integrated high-quality development of the Yangtze River Delta region and the national strategy of Peak Carbon Dioxide Emissions and Carbon Neutral, generally shortened to Dual Carbon, there is a strong demand for clean energy. The Yangtze River Delta is rich in mid-deep geothermal resources. It is of great significance to study the exploring technology and method of geothermal resources in mid-deep layers in the Yangtze River Delta. Moreover, its innovation and application which will support the low-carbon development of the Yangtze River Delta will promote the exploitation and utilization of geothermal resources in mid-deep layers in this region. Based on the exploration practice of geothermal resources in the Yangtze River Delta region, this paper analyzes and studies the applicable conditions and application effects of the main technical methods of geothermal exploration in different geological structure conditions, geothermal systems and heat storage types, and forms a method system of geothermal resources exploration in the middle and deep depths of the Yangtze River Delta region. The selection of medium and deep geothermal exploration technology and method should be carried out on the basis of fully analyzing the geological background of the exploration area. It is necessary to select appropriate technology and effective combination of methods according to different geothermal geological conditions and different exploration stages to ensure good exploration effect. Gravity and magnetic exploration are suitable for detecting the information of basement, fault structure and magmatic rock distribution in sedimentary basins. We utilize controlled source audio-frequency magnetotellurics (CSAMT) and wide-field electromagnetic method(WFEM) for detecting the location of hidden thermal reservoir and thermal control structure with high accuracy, which is the most effective method to determine the location of geothermal well. The ability of microtremor survey method(MSM) to distinguish geothermal reservoir and cap rock is better than other geophysical exploration methods. Temperature measurements in shallow drillholes and radon gas survey are the most effective means to explore convective geothermal resources in shallow cover area. Different combinations of techniques and methods should be adopted in exploring geothermal resources in different geological structural units. It is advisable to use the combination of CSAMT, WFEM, MSM, gravity and magnetic method to explore deep-buried conduction-type geothermal resources in tectonic uplift area. The combination of CSAMT, temperature measurement and radon measurement should be adopted to explore convective geothermal resources. A combination of CSAMT, large pole distance electric sounding and MSM is used to explore conduction-type pore geothermal resources in sedimentary basins. The combination of CSAMT, MSM, high precision gravity and shallow hole temperature measurement is used to explore the composite geothermal resources in the uplift and depression fault zone. In the area with strong hydrothermal activity, the underground heat storage structure and geothermal anomaly range are determined by analyzing the enrichment law of some special elements in soil and groundwater. The cationic chemical temperature scale and SiO2 temperature scale in geothermal fluid are used to estimate geothermal reservoir temperature. In general, hydrogen and oxygen stable isotopes are used to study the genesis of geothermal system. Different drilling, well formation and well washing methods should be adopted according to different geothermal reservoir types. Pore type geothermal wells with soft lithology of thermal reservoir generally adopt positive circulation mud drilling, spray well washing, polyphosphate well washing and other methods, the casing is inserted into the whole hole, and the water intake interval is formed by winding filter water pipe. For fissure geothermal wells with high lithologic hardness of hot reservoir, positive circulation mud drilling is generally adopted, which is suitable for injection well washing, polyphosphate well washing, liquid carbon dioxide well washing, compressed air well washing and other washing methods. Open hole well formation or filter pipe well formation is adopted for water intake interval. For the karst geothermal well whose reservoir lithology is carbonate rock, reverse circulation drilling and positive circulation drilling techniques can be used, and the water intake section can be formed by open hole or filter pipe. Acidizing fracturing is the most effective way to increase the water yield of karst - fissure geothermal well.
[1] 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321.
[2] Nicholson K. Geothermal fluids: Chemistry and exploration techniques[M]. Berlin: Springer, 2012.
[3] 吴昊旻, 黄安宁, 黄旋旋 . 近 50年长三角地区季节的气候变化特征[J]. 中国农业气象, 2012, 33(3): 317-324.
[4] 王莹, 马红云, 李海俊 . 长三角城市群夏季高温对未来全球增暖的响应[J]. 气象科学, 2021, 41(3): 285-294.
[5] 谢建磊, 方正, 李金柱, 等. 上海市地热资源地质条件及开发利用潜力分析[J]. 上海地质, 2009(2): 4-10.
[6] 吴海权, 杨则东, 疏浅, 等. 安徽省地热资源分布特征及开发利用建议[J]. 地质学刊, 2016, 40(1): 171-177.
[7] 杜建国, 姚文江, 范迪富 . 江苏地热资源类型及开发利用前景[J]. 地质学刊, 2012, 36(1): 86-91.
[8] 韦毅, 毛官辉, 吕清, 等. 浙江省水热型地热资源特征及赋存规律[J]. 上海国土资源, 2022, 43(2): 93-98.
[9] 陆衍 . 论上海市地热资源物探勘查[J]. 上海国土资源, 2015, 36(1): 67-72.
[10] 左丽琼, 王彩会, 荆慧, 等 . 综合物探方法在南通小洋口地区地热勘查中的应用[J]. 工程地球物理学报, 2016, 13(1): 122-129.
[11] 杨林, 姜国庆 . 中浅层构造裂隙型地热资源勘查中的综合地球物理方法——以苏南地区为例[J]. 地球物理学进展, 2020, 35(6): 2265-2275.
[12] 刘会毅, 徐坤, 国吉安, 等 . 综合物探方法在安徽沱湖地区地热勘查中的应用[J]. 工程地球物理学报, 2018, 15(5): 648-654.
[13] Zonge K L, Figgins S J, Hughes L J. Use of electrical geophysics to detect sources of groundwater contamination[G]//SEG Technical Program Expanded Abstracts 1985. Washington DC, USA: Society of Exploration Geophysicists, 1985: 147-149.
[14] Nabighian M N. Electromagnetic methods in applied geophysics-applications, Part A and Part B[M]. Tulsa: Society of Exploration Geophysics, 1996: 713-807.
[15] 袁桂琴, 熊盛青, 孟庆敏, 等 . 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1744-1805.
[16] Sandberg S K, Hohmann G W. Controlled-source audiomagnetotellurics in geothermal exploration[J]. Geophysics, 1982, 47(1): 100-116.
[17] 黄力军, 陆桂福, 刘瑞德. 可控源音频大地电磁测深法应用实例[J]. 物探化探计算技术, 2006, 28(4): 337-341.
[18] Wu G J, Hu X Y, Huo G P, et al. Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China[J]. Journal of Earth Science, Springer, 2012, 23(5): 757-767.
[19] Fu C M, Di Q Y, An Z G. Application of the CSAMT method to groundwater exploration in a metropolitan environment[J]. Geophysics, Society of Exploration Geophysicists, 2013, 78(5): B201-B209.
[20] Mustopa E J. 2D Interpretation of controlled source audio magnetotelluric (CSAMT) data integrated with borehole data in Kamojang geothermal field west Java, Indonesia[C]//Journal of Physics: Conference Series. Bandung: IOP Publishing, 2019, 1127(1): 012021.
[21] Guo Z W, Hu L Y, Liu C M, et al. Application of the CSAMT method to Pb-Zn mineral deposits: A case study in Jianshui, China[J]. Minerals, MDPI, 2019, 9(12): 726.
[22] Di Q Y, Fu C M, An Z G, et al. An application of CSAMT for detecting weak geological structures near the deeply buried long tunnel of the Shijiazhuang-Taiyuan passenger railway line in the Taihang Mountains[J]. Engineering Geology, 2020, 268: 105517.
[23] 范迪富, 徐宁玲 . 苏北盆地中低温地热资源成矿模式研究[J]. 水文地质工程地质, 2015(4): 164-170.
[24] 邹鹏飞, 邱杨, 范迪富. 苏北盆地典型地区中低温地热流体地球化学特征研究[J]. 高校地质学报, 2022, 28(2): 262-273.
[25] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019, 29(9): 1809-1816.
[26] 何继善, 薛国强 . 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1): 1-8.
[27] 何继善 . 广域电磁测深法研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1065-1072.
[28] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[29] 曹彦荣, 宋涛, 韩红庆, 等 . 用广域电磁法勘查深层地热资源[J]. 物探与化探, 2017, 41(4): 678-683.
[30] 柳建新, 郭振威, 郭荣文, 等 . CSAMT 和重力方法在狮子湖温泉深部地球物理勘查中的应用[J]. 地球物理学进展, 2009, 24(5): 1868-1873.
[31] Nabighian M N, Grauch V J S, Hansen R O, et al. The historical development of the magnetic method in exploration[J]. Geophysics, 2005, 70(6): 33ND-61ND.
[32] 娄德波, 宋国玺, 李楠, 等 . 磁法在我国矿产预测中的应用[J]. 地球物理学进展, 2008, 23(1): 249-256.
[33] 孙勇军, 徐佩芬, 凌甦群, 等 . 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1): 326-334.
[34] 何正勤, 丁志峰, 贾辉, 等 . 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007(2): 492-498.
[35] 徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013, 29(5): 1841-1845.
[36] 付微, 徐佩芬, 凌苏群, 等 . 微动勘探方法在地热勘查中的应用[J].上海国土资源, 2012, 33(3): 71-75.
[37] 张一梵 . 微动勘探法在浅层探测中的研究与应用[D]. 北京: 中国地质大学, 2019.
[38] 董耀, 李光辉, 高鹏举, 等 . 微动勘查技术在地热勘探中的应用[J].物探与化探, 2020, 44(6): 1345-1351.
[39] 陈斌. CSAMT法与微动测深法在漳州某区地热资源勘探中的应用[J].中国煤炭地质, 2021, 33(1): 64-69.
[40] Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2012, 188(1): 115-122.
[41] 甘伏平, 吕勇, 喻立平, 等 . 氡气测量与 CSAMT联合探测地下地质构造——以滇西潞西地区帕连、法帕剖面探测为例[J]. 地质通报, 2012, 31(Z1): 389-395.
[42] 贾文懿, 唐红, 葛君伟, 等 . 氡气测量及其在寻找基岩地下水、地热和工程地质中的应用[J]. 物探与化探, 1987(5): 339-347.
[43] 王莹, 周训, 于湲, 等 . 应用地热温标估算地下热储温度[J]. 现代地质, 2007(4): 605-612.
[44] 吕金波, 车用太, 王继明, 等 . 京北地区热水水文地球化学特征与地热系统的成因模式[J]. 地震地质, 2006(3): 419-429.
[45] Fournier R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4): 41-50.
[46] 孙占学, 李学礼, 史维浚. 江西中低温地热水的同位素水文地球化学[J]. 华东地质学院学报, 1992(3): 243-248.