[1] Nguyen V, Nguyen B, Huang C, et al. Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts[J]. Journal of Cleaner Production, 2020, 270: 121912.
[2] Si M, Shen B, Adwek G, et al. Review on the NO removal from flue gas by oxidation methods[J]. Journal Environment Science, 2021, 101: 49-71.
[3] Li Y, Yang C, Yao M, et al. Research and engineering practice of catalytic absorption of NO2 by tetrabutylammonium hydrogen sulfate for simultaneous removal of SO2/NOx[J]. Fuel, 2021, 283: 118858.
[4] 刘思哲, 黄超, 张宁, 等 . 介质阻挡放电协同 Fe2O3@SiO2-EDTA 催化剂脱除NO[J]. 化工环保 , 2021, 4(5): 601-605.
[5] Pei X, Gidon D, Yang Y, et al. Reducing energy cost of NOx production in air plasmas[J]. Chemical Engineering Journal, 2019, 362: 217-228.
[6] 王瑶瑶, 佟曦, 黄超, 等. 介质阻挡放电结合吸附剂和催化剂对 NO 转化效率的研究[J]. 电力学报, 2022, 37(1): 51-57.
[7] Deng J, He L, Zhao B, et al. Effects of air relative humidity on spectral characteristics of dielectric barrier discharge plasma assisted combustion reactor[J]. Vacuum, 2020, 175: 109189.
[8] Gao Y, Peng X, Zhang Z, et al. Ternary mixed-oxide synergy effects of nano TiO2-FexOy-MOk(M=Mn, Ce, Co) on α-pinene catalytic oxidation process assisted by nonthermal plasma[J]. Materials Research Express, 2021, 8(1): 15509.
[9] 黄寅, 孟永鹏, 马鑫哲, 等.表面电荷对介质阻挡放电发展的影响[J].中国电机工程学报, 2023, 43(8): 3248-3260.
[10] Zeghioud H, Nguyen-Tri P, Khezami L, et al. Review on discharge plasma for water treatment: Mechanism, reactor geometries, active species and combined processes[J]. Journal of Water Process Engineering, 2020, 38: 101664.
[11] Nitsche T, Budt M, Apfel U P. Plasmachemical trace-oxygen removal in a coke oven gas with a coaxial packed-bed-DBD reactor[J]. Chemie Ingenieur Technik, 2020, 92(10): 1559-1566.
[12] George A, Shen B, Craven M, et al. A review of non-thermal plasma technology: A novel solution for CO2 conversion and utilization[J]. Renewable & Sustainable Energy Reviews, 2021, 135: 109702.
[13] Bogaerts A, Neyts E C. Plasma technology: An emerging technology for energy storage[J]. ACS Energy Letters, 2018, 3(4): 1013-1027.
[14] Zhou W, Guan Z, Zhao M, et al. Characteristics and mechanism of toluene removal from gas by novelty array double dielectric barrier discharge combined with TiO2/Al2O3 catalyst[J]. Chemosphere, 2019, 226: 766-773.
[15] Li S, Dang X, Yu X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review[J]. Chemical Engineering Journal, 2020, 388(C): 124275.
[16] 于欣, 党小庆, 李世杰, 等 . 单介质和双介质阻挡放电低温等离子体降解甲苯的比较[J]. 环境工程学报,2020, 14(4): 1033-1041.
[17] Li S, Dang X, Yu X, et al. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor[J]. Journal of Hazardous Materials, 2020, 400: 123259.
[18] Zhou W, Ye Z, Nikiforov A, et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal[J]. Journal of Cleaner Production, 2021, 288: 125502.
[19] Golubovskii Y B, Maiorov V, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Institure of Physics Publishing, 2002, 35: 751-761.
[20] Lu W J, Abbas Y, Mustafa M F, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering. 2019, 13(2): 30.
[21] Wennberg P O, Anderso J G. Kinetics of reactions of ground state nitrogen atoms (4S3/2) with NO and NO2[J]. Journal of Geophysical Research, 1994, 99(D9): 18839-18846.
[22] Wine P H, Nlcovlch J M, Thompson R J, et al. Kinetics of O(3PJ) reactions with H2O2 and O3[J]. The Journal of Physical Chemistry, 1983, 87(20): 3948-3954.
[23] Obradovic B M, Sretenovic G B, Kuraicaa M M. A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas[J]. Journal of Hazardous Materials, 2011, 185: 1280-1286.
[24] Liang C, Cai Y, Li K, et al. Using dielectric barrier discharge and rotating packed bed reactor for NOx removal[J]. Separation and Purification Technology, 2020, 235: 116141.
[25] Wang T, Sun B M, Xiao H P. Effects of gas temperature on NOx removal by dielectric barrier discharge[J]. Environment Technoloy, 2013, 34(17-20): 2709-2716.
[26] Ma S, Lee S, Kim K, et al. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge[J]. Separation and Purification Technology, 2021, 255: 117715.
[27] Yang L, Lian K, Zhang X, et al. Nitric oxide removal from flue gas using dielectric barrier discharge coupled with negative pulse corona[J]. Chemical Engineering Research and Design, 2019, 143: 170-179.
[28] 庞吉宏, 胡舜迪, 洪欢欢, 等 . 载气中 N2浓度影响介质阻挡放电离子化效率的数值模拟研究[J]. 真空科学与技术学报, 2022, 42(3): 201-208.
[29] Hatakeyama Y, Suga A, Shimabukuro I, et al. Effect of the thickness of single-walled carbon nanotube electrodes on the discharge properties of Li-air batteries[J]. Journal of Electroanalytical Chemistry, 2020, 878: 114603.
[30] Zhang H, Li K, Li L, et al. High efficient styrene mineralization through novel NiO-TiO2-Al2O3 packed pre-treatment/treatment/post-treatment dielectric barrier discharge plasma[J]. Chemical Engineering Journal, 2018, 343: 759-769.
[31] Xu W, Lin K, Ye D, et al. Performance of toluene removal in a nonthermal plasma catalysis system over flake-like HZSM-5 zeolite with tunable pore size and evaluation of its byproducts[J]. Nanomaterials, 2019, 9(2): 290.
[32] Caihong Q, Hui G, Pin L, et al. Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with g-Al2O3, TiO2 or BaTiO3[J]. Journal of Industrial and Engineering Chemistry, 2018, 63: 449-455.
[33] Zhang Y, Nie J, Yuan C, et al. CuO@Cu/Ag/MWNTs/sponge electrode-enhanced pollutant removal in dielectric barrier discharge (DBD) reactor[J]. Chemosphere, 2019, 229: 273-283.
[34] Long Y, Nie J, Yuan C, et al. Preparation of CoFe2O4/MWNTs/sponge electrode to enhance dielectric barrier plasma discharge for degradation of phenylic pollutants and Cr(VI) reduction[J]. Applied Catalysis. B, Environmental, 2021, 283: 119604.
[35] Cai Y, Lu L, Li P. Study on the effect of structure parameters on NO oxidation in DBD reactor under oxygen-enriched condition[J]. Applied Sciences-Basel, 2020, 10(19): 6766.
[36] Selvarajan L, Senthil Kumar N, Raja R, et al. Effects of process parameter on performance measures in electrical discharge machining using copper and brass electrodes[J]. Materials Today: Proceedings, 2020, 46(19): 9257-9262.
[37] 郭大江. 介质阻挡放电脱除NOx的实验研究[J]. 重庆理工大学学报(自然科学), 2020, 34(10): 186-194.
[38] Allamsetty S, Mohapatro S. Prediction of NOx concentration in nonthermal plasma-treated diesel exhaust using dimensional analysis[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2034-2041.
[39] Guo X, Xu Y, Chen M, et al. Study on the performance of NTP with wood fiber in NO removal[J]. Plasma Chemistry and Plasma Processing, 2020, 40(4): 921-936.
[40] Hafeez A, Javed F, Fazal T, et al. Intensification of ozone generation and degradation of azo dye in non-thermal hybrid corona-DBD plasma micro-reactor[J]. Chemical Engineering and Processing, 2021, 159: 108205.
[41] Oskooei A B, Koohsorkhi J, Mehrpooya M. Simulation of plasma-assisted catalytic reduction of NOx, CO, and HC from diesel engine exhaust with COMSOL[J]. Chemical Engineering Science, 2019, 197: 135-149.
[42] Xie D, Sun Y, Zhu T, et al. Nitric oxide oxidation and its removal in mist by nonthermal plasma: Effects of discharge conditions[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11336-11343.
[43] Chen S, Wang T, Wang H, et al. Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FT-IR measurements[J]. Fuel Processing Technology, 2019, 186: 125-136.
[44] Harizanova R, Slavov S, Vladislavova L, et al. Barium titanate containing glass-ceramics-The effect of phase composition and microstructure on dielectric properties[J]. Ceramics International, 2020, 46(15): 24585-24591.
[45] Laiadi A, Chentouf A, Laghmich Y. Electrical modelling of homogeneous and filamentary dielectric barrier discharge at atmospheric pressure[J]. Materials Today: Proceedings, 2020, 24:160-165.
[46] Li J, Zhu S, Lu K, et al. CO2 conversion in a coaxial dielectric barrier discharge plasma reactor in the presence of mixed ZrO2-CeO2[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104654.
[47] Kelar J, Přibyl R, Pazderka M, et al. Change of fundamental properties of dielectric barrier discharge due to the alumina-based barrier layer composition[J]. Vacuum, 2020, 174: 109180.
[48] Wu J Y, Zhang H F, Meng N, et al. Perovskite Bi0.5Na0.5TiO3-based materials for dielectric capacitors with ultrahigh thermal stability[J]. Materials & Design, 2020, 198: 109344.
[49] Ozkan A, Dufour T, Bogaerts A, et al. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD[J]. Plasma Sources Science & Technology, 2016, 25(4): 45016.
[50] Srivastava A K. Selection of dielectric material for producing diffuse dielectric barrier discharge plasma at atmospheric pressure[J]. Materials Today: Proceedings, 2019, 18: 1033-1038.
[51] Zheng L, Zhou J, Shen J, et al. Effects on the thermal expansion coefficient and dielectric properties of CLST/PTFE filled with modified glass fiber as microwave material[J]. Chinese Chemical Letters, 2019, 30(5): 1111-1114.
[52] Peng H, Ren H, Dang M, et al. Novel high dielectric constant and low loss PTFE/CNT composites[J]. Ceramics International, 2018, 44(14): 16556-16560.
[53] Luo F, Tang B, Fang Z, et al. Effects of coupling agent on dielectric properties of PTFE based and Li2Mg3TiO6 filled composites[J]. Ceramics International, 2019, 45(16): 20458-20464.
[54] Cui S, Hao R, Fu D. Integrated method of non-thermal plasma combined with catalytical oxidation for simultaneous removal of SO2 and NO[J]. Fuel, 2019, 246: 365-374.
[55] Wang T, Sun B. Effect of temperature and relative humidity on NOx removal by dielectric barrier discharge with acetylene[J]. Fuel Processing Technology, 2016, 144: 109-114.
[56] Paulauskas R, Jõgi I, Striūgas N, et al. Application of non-thermal plasma for NOx reduction in the flue gases[J]. Energies, 2019, 12(20): 3955.
[57] Abdelaziz A A, Ishijima T, Osawa N. Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: Effect of oxygen content and humidity level[J]. Plasma Chemistry and Plasma Processing, 2019, 39: 165-185.
[58] An J, Jiang Y, Zhang Z, et al. Oxidation characteristics of mixed NO and HgO in coal-fired flue gas using active species injection generated by surface discharge plasma[J]. Chemical Engineering Journal, 2016, 288: 298-304.
[59] Wang Z Y, Kuang H L, Zhang J F, et al. Nitrogen oxide removal by non-thermal plasma for marine diesel engines[J]. Rsc Advances, 2019, 9(10): 5402-5416.
[60] Yang L, Zhang X, Kan Q, et al. Effect of gas composition on nitric oxide removal from simulated flue gas with DBD-NPC method[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 3017-3026.
[61] Deng J, He L, Zhao B, et al. Effects of air relative humidity on spectral characteristics of dielectric barrier discharge plasma assisted combustion reactor[J]. Vacuum, 2020, 175: 109189.