[1] 中国共产党中央委员会, 中华人民共和国国务院 . 交通强国建设纲要[A]. 北京: 中国共产党中央委员会, 中华人民共和国国务院, 2019.
[2] 中国城市轨道交通协会. 中国城市轨道交通智慧城轨发展纲要[J]. 城市轨道交通, 2020(4): 8-23.
[3] 中国城市轨道交通协会. 中国城市轨道交通绿色城轨发展行动方案[J]. 城市轨道交通, 2022(8): 20-35.
[4] 施仲衡, 丁树奎 . 城市轨道交通绿色低碳发展策略[J].都市快轨交通, 2022, 35(1): 1-4, 11.
[5] Bock U, Varchmin J U. Enhancement of the occupancy of railroads using virtually coupled train formations[C]//World Congress on Railway Research (WCRR). Tokoyo. 1999: 1-7.
[6] Song H F, Schnieder E. Availability and performance analysis of train-to-train data communication system[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2786-2795.
[7] Song H F, Gao S G, Li Y D, et al. Train-centric communication based autonomous train control system[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 721-731.
[8] Neri A, Rispoli F, Salvatori P. A GNSS based solution for supporting virtual block operations in train control systems[C]//2015 International Association of Institutes of Navigation World Congress (IAIN). Piscataway: IEEE, 2015, doi: 10.1109/IAIN.2015.7352253.
[9] Fantechi A, Gnesi S, Gori G. Future train control systems: Challenges for dependability assessment[C]//International Symposium on Leveraging Applications of Formal Methods. Cham: Springer, 2022: 269-285.
[10] Rail Safety and Standard Board (RSSB). Closer running (reduced headways): preparing a road map to further develop the closer running concept [R]. London: RSSB, 2016.
[11] Shift2Rail. Annual work plan 2016[R]. Brussels, Belgium: Shift2Rail, , 2016.
[12] Shift2Rail. CONNECTA[EB/OL]. [2022-12-01]. https://projects.shift2rail.org/s2r_ip1_n.aspx?p=CONNECTA.
[13] Shift2Rail. X2RAIL1[EB/OL]. [2022-12-01]. https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1.
[14] Shift2Rail. MOVINGRAIL[EB/OL]. [2022-12-01]. https://projects.shift2rail.org/s2r_projects.aspx.
[15] AVP Technology. Virtual coupling technology[EB/OL].[2022-12-01]. https://avpt. ru/en/products/product-line-for-freight-trains-electrical- locomotives/ virtual-coupling-technology/.
[16] Quaglietta E, Spartalis P, Wang M, et al. Modelling and analysis of Virtual Coupling with dynamic safety margin considering risk factors in railway operations[J]. Journal of Rail Transport Planning & Management, 2022, 22: 100313.
[17] Aoun J, Quaglietta E, Goverde R M P, et al. A hybrid Delphi-AHP multi-criteria analysis of moving block and virtual coupling railway signalling[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103250.
[18] Nold M, Corman F. Dynamic train unit coupling and decoupling at cruising speed: Systematic classification, operational potentials, and research agenda[J]. Journal of Rail Transport Planning & Management, 2021, 18: 100241.
[19] 杨安安, 孙继营, 汪波, 等 . 基于虚拟编组技术的大小交路列车开行方案优化[J]. 北京交通大学学报, 2022, 46(4): 9-14.
[20] 赵兴东, 张蕾, 谢莎婷, 等 . 基于虚拟编组技术的首都机场线列车开行方案研究[J]. 现代城市轨道交通, 2022(4): 59-65.
[21] 白佳薇, 张琦, 鲁放. 城市轨道交通虚拟编组列车快慢车组织方案研究[J]. 都市快轨交通, 2022, 35(1): 126-133.
[22] Gallo F, Febbraro A D, Giglio D, et al. A mathematical programming model for the management of carriages in virtually coupled trains[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems(ITSC). Piscataway: IEEE, 2020: 1-6.
[23] Park J, Lee B H, Eun Y. Virtual coupling of railway vehicles: Gap reference for merge and separation, robust control, and position measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1085-1096.
[24] Di Meo C, Di Vaio M, Flammini F, et al. ERTMS/ETCS virtual coupling: Proof of concept and numerical analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2545-2556.
[25] Zhang Z X, Song H F, Wang H W, et al. Cooperative multi-scenario departure control for virtual coupling trains: A fixed-time approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8545-8555.
[26] Wang Q, Chai M, Liu H J, et al. Optimized control of virtual coupling at junctions: A cooperative game-based approach[J]. Actuators, 2021, 10(9): 207.
[27] Quaglietta E, Wang M, Goverde R M P. A multi-state train-following model for the analysis of virtual coupling railway operations[J]. Journal of Rail Transport Planning & Management, 2020, 15: 100195.
[28] Xun J, Li Y Y, Liu R H, et al. A survey on control methods for virtual coupling in railway operation[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 838-855.
[29] 唐 涛 . 铁 路 区 间 闭 塞 [EB/OL]. 中 国 大 百 科 全 书 . [2022-12-01] https://www.zgbk.com/ecph/words?SiteID=1&ID=118874&SubID=10 2467.
[30] Woodland D. Optimisation of automatic train protection systems[D]. Sheffield: University of Sheffield, 2005.
[31] 宁滨 . 轨道交通系统中的列车运行追踪模型及交通流特性研究[D]. 北京: 北京交通大学, 2005.
[32] 宋志丹, 徐效宁, 李辉, 等 . 面向虚拟编组的列控技术研究[J]. 铁道标准设计, 2019, 63(6): 155-159.
[33] Wang J, Liu H, Tang T, et al. A Space-time interval based protection method for virtual coupling[C]//2022 China Automation Congress (CAC). Beijing: Chinese Association of Automation, 2022: 4906-4911.
[34] Zhou Q, Zhang C Y, Bao F, et al. The safety braking protection model of virtually coupled train platoon in subway[C]// 2020 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE Press, 2020: 401-406.
[35] Xun J, Chen M L, Liu Y F, et al. An overspeed protection mechanism for virtual coupling in railway[J]. IEEE Access, 2020, 8: 187400-187410.
[36] Su S, Liu W T, Zhu Q Y, et al. A cooperative collision-avoidance control methodology for virtual coupling trains[J]. Accident Analysis & Prevention, 2022, 173: 106703.
[37] Li S E, Zheng Y, Li K Q, et al. Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58.
[38] Feng S, Zhang Y, Li S E, et al. String stability for vehicular platoon control: Definitions and analysis methods[J]. Annual Reviews in Control, 2019, 47: 81-97.
[39] Wang Z R, Bian Y G, Shladover S E, et al. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 4-24.
[40] Felez J, Kim Y, Borrelli F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739.
[41] Liu Y F, Liu R H, Wei C F, et al. Distributed model predictive control strategy for constrained high-speed virtually coupled train set[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 171-183.
[42] Liu Y F, Zhou Y, Su S, et al. Control strategy for stable formation of high-speed virtually coupled trains with disturbances and delays[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 38(5), doi: 10.1111/ mice.12873.
[43] Luo X L, Tang T, Liu H J, et al. An adaptive model predictive control system for virtual coupling in metros[J]. Actuators, 2021, 10(8):178.
[44] Chai M, Su H X, Liu H J. Long short-term memory-based model predictive control for virtual coupling in railways[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-17.
[45] Liu Y F, Zhou Y, Su S, et al. An analytical optimal control approach for virtually coupled high-speed trains with local and string stability[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 102886.
[46] 张小林, 赵磊 . 模型预测控制在轨道交通虚拟耦合列控系统中的应用[J]. 城市轨道交通研究, 2021, 24(10): 233-237.
[47] Luo X L, Liu H J, Wang J Y, et al. Arrival time difference in virtually coupled train set: Cause and solution
[C]// 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway: IEEE, 2022: 474-479.
[48] Luo X L, Liu H J, Zhang L, et al. A model predictive control based inter-station driving strategy for virtual coupling trains in railway system[C]//2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Piscataway: IEEE, 2021: 3927-3932.
[49] Lang Y H, Liu H J, Luo X L, et al. DQN-based speed curve optimization for virtual coupling[C]//2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Piscataway: IEEE, 2022: 1758-1763.