Exclusive:Protection of rare and endangered germplasm resources of industrial crops

Advances of sugarcane germplasm resources

  • HUANG Yuxin ,
  • ZHANG Baoqing ,
  • ZHOU Shan ,
  • GAO Yijing ,
  • YANG Cuifang ,
  • ZHANG Gemin ,
  • LU Shanyu ,
  • DUAN Weixing
Expand
  • Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Guangxi Key Laboratory of Sugarcane Genetic Improvement; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement(Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China

Received date: 2022-06-23

  Revised date: 2022-09-13

  Online published: 2023-03-13

Abstract

Sugarcane is an important sugar crop with important economic value. The complexity of genetic background, theunclear origin and evolution and the lag of genomics research make it impossible to optimize the selection of parental materialsin sugarcane breeding, seriously restricting the development of sugarcane industry. In this paper, we reviews the research progress of the origin, systematic classification and evolution of sugarcane germplasm resources, the current situation ofconservation at home and abroad, as well as genomics in analyzing the genetic relationship and evolutionary history of sugar can especies and genera. The results will provide important references for the conservation, genetic diversity evaluation and industrial application & development of sugarcane germplasm resources.

Cite this article

HUANG Yuxin , ZHANG Baoqing , ZHOU Shan , GAO Yijing , YANG Cuifang , ZHANG Gemin , LU Shanyu , DUAN Weixing . Advances of sugarcane germplasm resources[J]. Science & Technology Review, 2023 , 41(4) : 43 -49 . DOI: 10.3981/j.issn.1000-7857.2023.04.005

References

[1] D'Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana [J]. Cytogenetic and Genome Research, 2005, 109(1-3):27-33.
[2] Porter G R. The nature and properties of the sugar-cane,with practical directions for the improvement of its culture, and the manufacture of its products[M]. London:Smith, Elder and Co., 1830: 240.
[3] 周可涌. 中国蔗糖简史: 兼论甘蔗起源[J]. 福建农学院学报, 1984, 13(1): 69-83.
[4] Daniels J, Smith P, Paton N. The origin of sugarcanes and centres of genetic diversity in Saccharum[C]//Symposium on South East Asian Plant Genetic Resources Proceeding.Bogor, 1975: 20-22.
[5] 骆君骕. 甘蔗学[M]. 广州: 广东甘蔗学会, 1984.
[6] Brandes E W, Sattoris G B. Sugarcane: Its origin and improvement[M]//United States Department of Agriculture,Yearbook. New York: United States Department of Agriculture, 1936: 561-623.
[7] 耿以礼. 中国主要植物图说-禾本科[M]. 北京: 科学出版社, 1959.
[8] 陈守良. 中国植物志[M]. 北京: 科学出版社, 1997.
[9] 孙必兴, 李德铢, 薛纪如. 禾本科[M]//吴征镒. 云南植物志(第9卷)[M]. 北京: 科学出版社, 2003.
[10] Chen S L, Sun B X, Phillips S M, et al. Tribe andropogoneae [M]//Wu Z Y, Raven P H. Flora of China. Beijing:Science Press, Louis: Missouri Botanical Garden Press,2006.
[11] 于慧, 赵南先. 甘蔗亚族的地理分布[J]. 热带亚热带植物学报, 2004, 12(1): 29-35.
[12] 周耀辉. 甘蔗种质资源的分类、研究和利用: 赴美学习汇报[J]. 甘蔗糖业, 1987(6): 3-4.
[13] Brown J S, Schnell R J, Power E J, et al. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers[J]. Genetic Resources and Crop Evolution, 2007, 54(3): 627-648.
[14] D'hont A, Ison D, Alix K, et al. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes[J]. Genome, 1998,41(2): 221-225.
[15] D'hont A, Paulet F, Glaszmann J C. Oligoclonal interspecific origin of 'north Indian' and 'Chinese' sugarcanes[J]. Chromosome Research, 2002, 10(3): 253-262.
[16] Daniels J, Roach B T. Taxonomy and evolution in Sugarcane improvement through breeding[M]. Amsterdam:Elsevier Press, 1987.
[17] Guimaraes C T, Sobral B W S. The Saccharum complex:Relation to other Andropogoneae[M]//Janick J. Plant breed reviews. New York: John Wiley & Sons Inc, 1998,16: 269-288.
[18] Irvine J E. Saccharum species as horticultural classes[J].Theoretical and Applied Genetics, 1999, 98(2): 186-194.
[19] 黄永棠. 印度和美国两个世界性收集圃登记所保育的甘蔗属综合材料的无性系[J]. 甘蔗糖业, 1991(3): 24.
[20] 李奇伟. 印度甘蔗种质资源的收集, 保存与利用[J]. 甘蔗糖业, 1992 (2): 1-4.
[21] 陆鑫, 朱建荣, 周会,等. 美国农业部甘蔗研究所科研动向与甘蔗种质资源保存概况[J]. 中国糖料, 2013(1):78-80.
[22] Palmer J D. Comparative organization of chloroplast genomes[J]. Annual Review of Genetics, 1985, 19: 325-354.
[23] Asano T, Tsudzuki T, Takahashi S, et al. Complete nucleotide sequence of the sugarcane(Saccharum officinarum) chloroplast genome: A comparative analysis of four monocot chloroplast genomes[J]. DNA Research, 2004,11: 93-99.
[24] Júnior T C, Carraro D M, Benatti M R, et al. Structural features and transcript-editing analysis of sugarcane(Saccharum officinarum L.) chloroplast genome[J]. Current Genetics,2004, 46: 366-373.
[25] Hoang N V, Furtado A, McQualter R B, et al. Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy[J]. New Negatives in Plant Science, 2015, 1: 33-45.
[26] Vidigal P M P, Coelho A S G, Novaes E, et al. Complete chloroplast genome sequence and annotation of the Saccharum hybrid cultivar RB867515[J]. Genome Announcements, 2016, 4(5): e01157-16
[27] 薛宏. 芒和荻叶绿体DNA全基因组测序分析及InDel标记的开发[D]. 长沙: 湖南农业大学, 2015.
[28] Shin-Ichi T, Masumi E, Makoto K, et al. Complete chloroplast genomes of erianthus arundinaceus and miscanthus sinensis: Comparative genomics and evolution of the saccharum complex[J]. PLoS One, 2017, 12(1):e0169992.
[29] Xu F, He L, Gao S, et al. Comparative analysis of two sugarcane ancestors Saccharum officinarum and S. spontaneum based on complete chloroplast genome sequences and photosynthetic ability in cold stress[J]. International Journal of Molecular Sciences, 2019, 20(15): 3828.
[30] Sheng J, Yan M, Wang J, et al. The complete chloroplast genome sequences of five Miscanthus species, and comparative analyses with other grass plastomes[J]. Industrial Crops and Products, 2021, 162: 113248.
[31] Li S C, Duan W X, Zhao J H, et al. Comparative analysis of chloroplast genome in Saccharum spp. and related members of 'saccharum complex'[J]. International Journal of Molecular Sciences,2022, 23: 7661.
[32] Shearman J R, Sonthirod C, Naktang C, et al. The two chromosomes of the mitochondrial genome of a sugarcane cultivar: Assembly and recombination analysis using long PacBio reads[J]. Scientific Reports, 2016, 6(1):31533.
[33] Evans D L, Hlongwane T T, Joshi S V, et al. The sugarcane mitochondrial genome: Assembly, phylogenetic and transcriptomics[J]. PeerJ, 2019, 7(8): e7558.
[34] Liu X, Yin Z, Liu Y, et al. The complete mitochondrial genome of sugarcane(Saccharum spp.) variety FN15[J].Mitochondrial DNA Part B, 2020, 5(3): 2163-2165.
[35] Liu X, Xu L, Que Y, et al. The complete mitochondrial genome and phylogenetic analysis of sugarcane(Saccharum spp. hybrids) line 15a-53[J]. Mitochondrial DNA Part B, 2020, 5(3): 3407-3409.
[36] 董广蕊, 石佳仙, 侯藹玲,等. 甘蔗基因组研究进展[J].生物技术, 2018, 28(3): 296-301.
[37] Zhang J, Nagai C, Yu Q, et al. Genome size variation in three Saccharum species[J]. Euphytica, 2012, 185(3):511-519.
[38] Zhang J S, Zhang X T, Tang H B, et al. Allele-defined genome of the autopolyploid sugarcane saccharum spontaneum L[J]. Nature Genetics, 2018, 50(11): 1565-1573.
[39] Zhang Q, Qi Y Y, Pan H R, et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum[J]. Nature Genetics, 2022,54(6): 885-896.
[40] Zhang G B, Ge C X, Xu P P, et al. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae[J]. Nature Plants, 2021, 7(5): 608-618.
Outlines

/