Exclusive:Protection of rare and endangered germplasm resources of industrial crops

Current achievements and protection suggestions of wild germplasm resources of chrysanthemum

  • CHEN Xi ,
  • JIANG Jiafu ,
  • CHEN Fadi
Expand
  • 1. College of Agriculture and Biological Sciences, Dali University, Dali 671003, China
    2. College of horticulture, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2022-06-20

  Revised date: 2022-09-18

  Online published: 2023-03-13

Abstract

This paper reviewed the distribution patterns, diversity hotspots, research status and protection of rare species related to chrysanthemum. The survival and protection status of Chrysanthemum, Ajania and other rare or endemic Asteraceae species in China was reported. Then, the research progress and proposed protection levels of a number of rare germplasm resources were put forward, mainly including C. rhombifolium, C. zhuozishanense, A. sericea, Opisthopappus taihangensis, Formania mekongensis, Leucomeris decora and Nouelia insignis. In addition, we systematically expounded the research progress of rare species protection from two aspects: habitats investigation and endangered mechanism research. Finally, from the perspectives of advanced monitoring technology system excavation and interdisciplinary analysis, the research methods and future prospects for the protection of chrysanthemum related wild germplasm resources were suggested.

Cite this article

CHEN Xi , JIANG Jiafu , CHEN Fadi . Current achievements and protection suggestions of wild germplasm resources of chrysanthemum[J]. Science & Technology Review, 2023 , 41(4) : 31 -42 . DOI: 10.3981/j.issn.1000-7857.2023.04.004

References

[1] Teixeira da Silva J A, Shinoyama H, Aida R, et al. Chrysanthemum biotechnology: Quo vadis?[J]. Critical Reviews in Plant Sciences, 2013, 32(1): 21-52.
[2] Su J S, Jiang J F, Zhang F, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: A review[J]. Horticulture Research, 2019, 6(1):109.
[3] Hirakawa H, Sumitomo K, Hisamatsu T, et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis[J]. DNA Research,2019, 26(3): 195-203.
[4] Song C, Liu Y, Song A, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits[J]. Molecular Plant, 2018, 11(12): 1482-1491.
[5] Yan W, Jung J A, Lim K B, et al. Cytogenetic studies of Chrysanthemum: A review[J]. Flower Research Journal,2019, 27(4): 242-253.
[6] 陈俊愉. 菊花起源汉英双语[M]. 合肥: 安徽科学技术出版社, 2012.
[7] Zhu Y, Zhang L X, Zhao Y, et al. Unusual sesquiterpene lactones with a new carbon skeleton and new acetylenes from Ajania przewalskii[J]. Food Chemistry, 2010, 118(2):228-238.
[8] Ohashi H, Yonekura K. New combinations in Chrysanthe⁃mum (Compositae-Anthemideae) of Asia with a list of Japanese species[J]. Journal of Japanese Botany, 2004, 79:186-195.
[9] Deng Y M, Teng N J, Chen S M, et al. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) kitam[J]. Euphytica, 2010,174(1): 41-50.
[10] Zhao H, Chen S, Tang F, et al. Morphological characteristics and chromosome behaviour in F1, F2 and BC1 progenies between Chrysanthemum × morifolium and Ajania pacifica[J]. Russian Journal of Genetics, 2012, 48(8):808-818.
[11] Bremer K, Humphries C J. The generic monograph of the Asteraceae-Anthemideae[J]. Bulletin of the Natural History Museum London (Botany), 1993, 23: 71-177.
[12] Muldashev A A. A new genus Phaeostigma (Asteraceae) from the East Asia[J]. Botanischeskii Zhurnal, 1981, 66:584-588.
[13] Zhao H B, Chen F D, Chen S M, et al. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences[J]. Plant Systematics and Evolution, 2010, 284(3): 153-169.
[14] Huang Y, An Y M, Meng S Y, et al. Taxonomic status and phylogenetic position of Phaeostigmain the subtribe Artemisiinae (Asteraceae)[J]. Journal of Systematics and Evolution, 2017,55(5): 426-436.
[15] 胡枭, 赵惠恩. 太行菊属与菊属亚菊属远缘杂交试验初报[J]. 现代农业科学, 2008, 15(6): 12-14.
[16] 李鸿渐, 邵建文. 中国菊花品种资源的调查收集与分类[J]. 南京农业大学学报, 1990, 13(1): 30-36.
[17] Zhao H E, Liu Z H, Hu X, et al. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China[J]. Genetic Resources and Crop Evolution, 2009, 56: 937-946.
[18] 戴思兰, 陈俊愉. 中国菊属一些种的分支分类学研究[J]. 武汉植物学研究, 1997, 15(1): 27-24.
[19] 吴国盛, 陈发棣, 陈素梅,等. 部分菊属与亚菊属植物的形态学聚类及亲缘关系分析[J]. 南京农业大学学报,2009, 32(1): 155-159.
[20] 陈发棣, 陈佩度, 李鸿渐. 几种中国野生菊的染色体组分析及亲缘关系初步研究[J]. 园艺学报, 1996, 23(1):67-72.
[21] He J, Zhao Y, Zhang S S, et al. Uneven levels of 5S and 45S rDNA site number and loci variations across wild Chrysanthemum accessions[J]. Genes, 2022, 13(5): 894. 
[22] Hoang T K, Wang Y, Hwang Y J, et al. Analysis of the morphological characteristics and karyomorphology of wild Chrysanthemum species in Korea[J]. Horticulture,Environment, and Biotechnology, 2020, 61(2): 359-369.
[23] Wei Q, Ma C, Xu Y J, et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nature Communications, 2017, 8: 829.
[24] Huang Y Y, Xing X J, Tang Y, et al. An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum[J]. Plant, Cell & Environment,2022, 45(5): 1442-1456.
[25] Zhao W Q, Ding L, Liu J Y, et al. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in chrysanthemum[J].Journal of Experiment al Botany,2022, 73(8): 2403-2419.
[26] 陈希. 三个菊花近缘种属类群亲缘与演化关系研究[D]. 南京: 南京农业大学, 2020.
[27] 石铸, 彭广芳, 张素芹,等. 中国菊属二新种[J]. 植物分类学报, 1999, 37(6): 598-600.
[28] Meng S Y, Wu L, Shen C Z. Chrysanthemum bizarre, a new species of Chrysanthemum from Hunan, China[J].Phytotaxa, 2020, 442(3): 215-224.
[29] Zhao L Q, Yang J, Niu J M, et al. Chrysanthemum zhuozishanense (Compositae), a new species in section Chrysanthemum from Inner Mongolia, China[J]. Novon:A Journal for Botanical Nomenclature, 2014, 23(2): 255-257.
[30] Liu P L, Wan Q, Guo Y P, et al. Phylogeny of the genus Chrysanthemum L.: Evidence from single-copy nuclear gene and chloroplast DNA sequences[J]. PLoS One,2012, 7(11): e48970.
[31] Chen J T, Zhong J, Shi X J, et al. Chrysanthemum yantaiense, a rare new species of Asteraceae from China[J]. Phytotaxa, 2018, 374(1): 092-096.
[32] Kitamura S. Report on the distribution of the wild Chrysanthemums of Japan[J]. Acta Phytotaxonomica et Geobotanica, 1967, 22:109-137.
[33] Nakata M, Tanaka R, Taniguchi K, et al. Species of wild Chrysanthemums in Japan: Cytological and cytogenetical view on its entity[J]. Acta Phytotaxonomica et Geobotanica, 1987,38:241-259.
[34] 安一鸣. 亚菊属及其近缘类群的系统发育与生物地理学研究[D]. 北京: 北京大学, 2012.
[35] Chen X, Wang H, Yang X, et al. Small-scale alpine topography at low latitudes and high altitudes: Refuge areas of the genus Chrysanthemum and its allies[J]. Horticulture Research, 2020, 7: 184.
[36] Pellicer J, Hidalgo O, Garcia S, et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae) [J]. Botanical Journal of the Linnean Society, 2009, 61(2):171-189.
[37] Wu J, Zhang K, Xu Y, et al. Paleoelevations in the Jianchuan basin of the southeastern Tibetan plateau based on stable isotope and pollen grain analyses[J]. Palaeoeography, Palaeoclimatology, Palaeoecology, 2018, 510:93-108.
[38] 韩夏. 濒危植物太行菊属谱系地理学研究[D]. 太原: 山西师范大学, 2013.
[39] Watson E L, Bates P L, Evans T M, et al. Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera[J].BMC Evolutionary Biology, 2002, 2: 17-28.
[40] Sanz M, Vilatersana R, Hidalgo O, et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): Evidence from nrDNA ETS and ITS sequences[J]. Taxon, 2008, 57(1): 66-78.
[41] Ma Y P, Chen M M, Wei J X, et al. Origin of Chrysanthemum cultivars—Evidence from nuclearlow-copy LFY gene sequences[J]. Biochemical Systematics and Ecology, 2016, 65: 129-136.
[42] Ma Y P, Zhao L, Zhang W J, et al. Origins of cultivars of chrysanthemum—Evidence from the chloroplast genome and nuclear LFY gene[J]. Journal of Systematics and Evolution, 2020, 58(6): 925-944.
[43] Wang H B, Qi X Y, Gao R, et al. Microsatellite polymorphism among Chrysanthemum sp. polyploids: The influence of whole genome duplication[J]. Scientific Reports, 2014, 4: 6730.
[44] Shen C Z, Zhang C J, Chen J, et al. Clarifying recent adaptive diversification of the Chrysanthemum-group on the basis of an updated multilocus phylogeny of subtribe Artemisiinae (Asteraceae: Anthemideae) [J]. Frontiers in Plant Science, 2021, 12: 648026.
[45] Li J, Wan Q, Guo Y P, et al. Should I stay or should I go: Biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China[J]. New Phytolo⁃ gist, 2014, 201(3): 1031-1044.
[46] Wen X, Li J, Wang L, et al. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse capitulum types[J]. Horticulture Research,2022, 9: uhab022.
[47] Deng Y M, Jiang J F, Chen S M, et al. Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization[J].PLoS One, 2012, 7(8):e44337.
[48] Shi Z N, Wu H R, Pang X Y, et al. Secondary metabolites from Ajania salicifolia and their chemotaxonomic significance[J]. Biochemical Systematics and Ecology, 2017, 70: 162-167.
[49] Ryu J, Nam B, Kim B R, et al. Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium[J]. Molecules, 2019, 24(16): 3003.
[50] Chu X, Gugger P F, Li L, et al. Responses of an endemic species (Roscoea humeana) in the Hengduan Mountains to climate change[J]. Diversity and Distributions,2021, 27(11): 2231-2244.
[51] Auld J, Everingham S E, Hemmings F A, et al. Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time[J]. Diversity and Distributions, 2022, 28(5): 943-955.
[52] 张滋芳, 毕润成, 张钦弟,等. 珍稀濒危植物矮牡丹生存群落优势种种间联结性及群落稳定性[J]. 应用与环境生物学报, 2019, 25(2): 291-299.
[53] 朱华, 杜凡. 设立云南金沙江干热河谷萨王纳植被自 然保护地的建议[J]. 生物多样性, 2022, 30(3): 186-190.
[54] 黄文德, 贺达江, 米贤武,等. 一种基于北斗的珍稀濒危植物保护技术框架[J]. 电子测量技术, 2021, 44(18):42-46.
[55] Guo W, Carroll M E, Singh A, et al. UAS-based plant phenotyping for research and breeding applications[J].Plant Phenomics, 2021, 2021: 9840192.
[56] Bruelheide H, Jansen F, Jandt U, et al. Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends[J]. Diversity and Distributions, 2020, 26(7): 782-794.
[57] Catelotti K, Bino G, Offord C A. Thermal germination niches of Persoonia species and projected spatiotemporal shifts under a changing climate[J]. Diversity and Distributions, 2020, 26: 589-609.
[58] 姚志, 郭军, 金晨钟,等. 中国纳入一级保护的极小种群野生植物濒危机制[J]. 生物多样性, 2021, 29(3):394-408.
[59] Yang Y Z, Ma T, Wang Z F, et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana[J]. Nature Communications, 2018, 9(1): 5449.
[60] Rodrigues D M, Turchetto C, Callegari-Jacques S M, et al. Can the reproductive system of a rare and narrowly endemic plant species explain its high genetic diversity?[J]. Acta Botanica Brasilica, 2018, 32(2): 180-187.
[61] Mahmoodi S, Heydari M, Ahmadi K, et al. The current and future potential geographical distribution of Nepeta crispa Willd, an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation andrestoration[J].EcologicalIndicators,2022,137:108752. 
[62] Pouteau R, Brunel C, Dawson W, et al. Environmental and socioeconomic correlates of extinction risk in endemic species[J]. Diversity and Distributions, 2022, 28(1): 53-64.
[63] 郑殿升, 高爱农, 李立会,等. 贵州少数民族地区作物稀有种质资源和野生近缘植物[J]. 植物遗传资源学报,2016, 17(3): 570-576.
[64] White O W, Reyes-Betancort J A, Chapman M A, et al.Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae) [J]. New Phytologist,2020, 228(6): 1953-1971.
Outlines

/