Exclusive: Deep geothermal reservoir stimulation technology

Application of geothermal reservoir modification technologies and prospective

  • YUAN Ruoxi ,
  • MA Feng ,
  • ZHANG Wei ,
  • ZHU Xi ,
  • LU Chuan ,
  • ZHANG Hanxiong ,
  • YU Mingxiao ,
  • LI Chutong
Expand
  • 1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
    2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

Received date: 2022-09-08

  Revised date: 2022-10-12

  Online published: 2022-11-15

Supported by

 

Abstract

The reservoir modification technology is an effective means to improve the development capacity of deep thermal reservoirs. It increases the heat transfer capacity between the rock and the fluid by increasing the permeability of the thermal reservoir, maximizing the exploitation of the thermal energy in the rock. This paper reviews the development history and the production enhancement principle of the acidification technology in reservoir modification technologies, compares the relevant cases and researches of the acidification production enhancement carried out in the canonical geothermal fields abroad, as well as the commonly used acidic chemical stimulants and the production enhancement effects. By analyzing the experience and the lessons learned from the reservoir modification abroad, some guidance is provided for the modification of deep carbonate thermal reservoirs t in China.

Cite this article

YUAN Ruoxi , MA Feng , ZHANG Wei , ZHU Xi , LU Chuan , ZHANG Hanxiong , YU Mingxiao , LI Chutong . Application of geothermal reservoir modification technologies and prospective[J]. Science & Technology Review, 2022 , 40(20) : 52 -64 . DOI: 10.3981/j.issn.1000-7857.2022.20.007

References

[1] 国家发展改革委发布."十四五"可再生能源发展规划[EB/OL].(2022-06-01)[2022-09-04].https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf.
[2] 张薇, 王贵玲, 刘峰, 等.中国沉积盆地型地热资源特征[J].中国地质, 2019, 46(2):255-268.
[3] Ma F, Wang G L, Sun H L, et al.Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China[J].Journal of Groundwater Science and Engineering, 2022, 10(1):70-86.
[4] 汪集旸, 胡圣标, 庞忠和, 等.中国大陆干热岩地热资源潜力评估[J].科技导报, 2012, 30(32):25-31.
[5] 王贵玲, 张薇, 梁继运, 等.中国地热资源潜力评价[J].地球学报, 2017, 38(4):449-450.
[6] 伍晓龙, 杜垚森, 王庆晓.冀中坳陷区域JZ04井钻井工程设计[J].钻探工程, 2021, 48(7):84-90.
[7] 王思琪, 张保建, 李燕燕, 等.雄安新区高阳地热田东北部深部古潜山聚热机制[J].地质科技通报, 2021, 40(3):12-21.
[8] 张云, 高亮, 刘现川, 等.唐山马头营干热岩M-1井钻井工艺技术[J].地质与勘探, 2022, 58(1):176-186.
[9] 张森琦, 吴海东, 张杨, 等.青海省贵德县热水泉干热岩体地质-地热地质特征[J].地质学报, 2020, 94(5):1591-1605.
[10] 叶顺友, 杨灿, 王海斌, 等.海南福山凹陷花东1R井干热岩钻井关键技术[J].石油钻探技术, 2019, 47(4):10-16.
[11] 马峰, 王贵玲, 朱喜, 等.雄安新区深部碳酸盐岩热储强化增产试验研究[J].工程科学学报, 2022, 44(10):1789-1798.
[12] Huenges E.Enhanced geothermal systems:Review and status of research and development[J].Geothermal Power Generation, 2016, 2016:743-761.
[13] 赵金洲, 任岚, 蒋廷学, 等.中国页岩气压裂十年:回顾与展望[J].天然气工业, 2021, 41(8):121-142.
[14] 那金.化学刺激技术对增强型地热系统(EGS)热储层改造作用研究:以松辽盆地营城组为例[D].长春:吉林大学, 2016.
[15] King G E.Acidizing concepts-Matrix vs.Fracture acidizing[J].Journal of Petroleum Technology, 1986, 38(5):507-508.
[16] Li N Y, Dai J X, Li J H, et al.Application status and research progress of shale reservoirs acid treatment technology[J].Natural Gas Industry B, 2016, 3(2):165-172.
[17] Sutra E, Spada M, Burgherr P.Chemicals usage in stimulation processes for shale gas and deep geothermal systems:A comprehensive review and comparison[J].Renewable and Sustainable Energy Reviews, 2017, 77:1-11.
[18] 任忠喜.水力压裂增产技术进展[J].化学工程与装备, 2020(10):52, 45.
[19] Schill E, Cuenot N, Genter A, et al.Review of the Hydraulic development in the multi-reservoir/multi-well EGS project of soultz-sous-fore?ts[C]//Proceedings of World Geothermal Congress 2015.Melbourne:International Geothermal Association, 2015:19-25.
[20] 林天懿, 柯柏林, 杨淼, 等.碳酸盐岩热储酸化压裂增产机理研究及应用[J].城市地质, 2018, 13(3):21-26.
[21] 朱丽君, 刘国良.酸化压裂工艺技术综述[J].安徽化工, 2015, 41(2):9.
[22] Grubelich M C, King D, Knudsen S, et al.An overview of a high energy stimulation technique for geothermal applications[C]//Proceedings of the World Geothermal Congress 2015.Melbourne:International Geothermal Association, 2015:1-6.
[23] Portier S, André L, Vuataz F D.Review on chemical stimulation techniques in oil industry and applications to eothermal systems[R].Neuchâtel:Deep Heat Mining Association, 2007.
[24] Kalfayan L J.Fracture acidizing:History, present state, and future[C]//SPE Hydraulic Fracturing Technology Conference.Richardson:SPE Hydraulic Fracturing Technology Conference held in College Station, 2007:SPE-106371-MS.
[25] Portier S, Vuataz F D, Nami P, et al.Chemical stimulation techniques for geothermal wells:Experiments on the three-well EGS system at Soultz-sous-Forêts, France[J].Geothermics, 2009, 38(4):349-359.
[26] Strawn J A.Results of acid treatment in hydrothermal direct heat experiment wells[C]//Proceedings of Geothermal Resource Council Meeting.Salt Lake City:OSTI, 1980:427-430.
[27] Al-Harthy S, Bustos O A, Samuel M, et al.Options for high-temperature well stimulation[J].Oilfield Review, 2008, 20(4):52-62.
[28] 冯波, 许佳男, 许天福, 等.化学刺激技术在干热岩储层改造中的应用与最新进展[J].地球科学与环境学报, 2019, 41(5):577-591.
[29] Mcleod H O.Matrix acidizing[J].Journal of Petroleum Technology, 1984, 36(13):2055-2069.
[30] 刘明亮, 庄亚芹, 周超, 等.化学刺激技术在增强型地热系统中的应用:理论、实践与展望[J].地球科学与环境学报, 2016, 38(2):267-276.
[31] Entingh D J.Geothermal well stimulation experiments in the United States[C]//Proceedings of the World Geothermal Congress 2000.Kyushu-Tohoku:International Geothermal Association, 2000:3689-3694.
[32] 毛峥, 李亭, 刘德华, 等.水力压裂支撑剂应用现状与研究进展[J].应用化工, 2022, 51(2):525-530, 537.
[33] 孙晓林, 杨宝美, 高新智, 等.天津城区奥陶系灰岩热储层酸化压裂增产试验研究[J].河北工业大学学报, 2019, 48(6):87-92.
[34] 申云飞, 卢玮, 陈莹, 等.水力压裂技术在豫西基岩地热井增产中的应用研究[J].探矿工程(岩土钻掘工程), 2016, 43(10):253-256.
[35] 刘庆, 柯柏林, 林天懿, 等.酸化压裂技术在碳酸盐岩热储中的应用[J].城市地质, 2020, 15(3):327-335.
[36] 赵永平, 曹元平, 李龙.酸化压裂技术在油气田开发中的应用研究[J].中国石油和化工标准与质量, 2012, 33(16):20.
[37] 王连成, 李明朗, 程万庆, 等.酸化压裂方法在碳酸盐岩热储层中的应用[J].水文地质工程地质, 2010, 37(5):128-132.
[38] Jaimes-Maldonado J G, Sànchez-Velasco R.Acid stimulation of production wells in Las Tres Vírgenes geothermal field, BCS, México[J].Geothermal Resources Council Transactions, 2003, 27:699-705.
[39] Kalfayan L.Production enhancement with acid stimulation[M].2nd ed.Tulsa:PennWell Corporation, 2008.
[40] Akin S, Yildirim N, Yazman M, et al.Coiled tubing acid stimulation of Alaehir Geothermal Field, Turkey[C]//Proceedings of World Geothermal Congress 2015.Melbourne:International Geothermal Association, 2015:1-6.
[41] Buning B C, Malate R C M, Lacanilao A M, et al.Recent experiments in acid stimulation technology by PNOC-Energy Development Corporation, Philippines[C]//Proceedings of the World Geothermal Congress 1995.Florence:International Geothermal Association, 1995:1807-1812.
[42] Yglopaz D M, Buning B C, Malate R C M, et al.Proving the Mahanagdong B resource:A case of a large-scale well stimulation strategy, Leyte Geothermal Power Project, Philippines[C]//Proceedings of the 23rd Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University, 1998:51-56.
[43] Malate R C M, Yglopaz D M, Austria J J C, et al.Acid stimulation of injection wells in the Leyte geothermal power project, Philippines[C]//Proceedings of the Twenty-Two Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University, 1997:267-272.
[44] Buning B C, Malate R C M, Austria, J J C, et al.Casing perforation and acid treatment of well SK-2D Mindanao 1 Geothermal project, Philippines[C]//Proceedings of the Twenty-Two Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University, 1997:273-277.
[45] Pasikki R G, Gilmore T G.Coiled tubing acid stimulation:the case of Awi 8-7 production well in Salak geothermal field, Indonesia[C]//Proceedings of Thirty-First Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University, 2006:SGP-TR-179.
[46] Barrios L A, Quijano J E, Romero R E, et al.Enhanced permeability by chemical stimulation at the Berlin Geothermal Field, El Salvador[J].Geothermal Resources Council Transactionsy, 2002, 26:73-78.
[47] Flores M, Barajas E N, Rodriguez M A.Productivity analysis and acid treatment of well AZ-9AD at the Los Azufres geothermal field, Mexico[J].Geothermal Resources Council Transactions, 2006, 30:791-796.
[48] Cappetti G.How EGS is investigated in the case of the Larderello geothermal field[C]//Proceedings of the Engine Launching Conference.Orléans:SlideServe, 2006, 32:12-15.
[49] Pasikki R G, Libert F, Yoshioka K, et al.Well stimulation techniques applied at the Salak geothermal field[C]//Proceedings of the World Geothermal Congress 2010.Bali Indonesia:International Geothermal Association, 2010:1-11.
[50] Alcalá L M.Acid stimulation of geothermal wells in Mexico, El Salvador and the Philippines[R].Reykjavik:Geothermal Training Programme, 2012.
[51] Verma S P, Pandarinath K, Santoyo E, et al.Fluid chemistry and temperatures prior to exploitation at the Las Tres Vírgenes geothermal field, Mexico[J].Geothermics, 2006, 35(2):156-180.
[52] Flores-Armenta M.Geothermal activity and development in Mexico:Keeping the production going[R].Santa Tecla:UNU-GTP, LaGeo, 2014.
[53] Flores-Armenta M, Ramirez-Montes M A, Morales-Alcalá L.Acid Fracturing Results for Well AZ-47D, Los Azufres Geothermal Field in Mexico[C]//Proceedings of the World Geothermal Congress 2015.Melbourne:International Geothermal Association, 2015:1-9.
[54] Barrios L, Guerra E, Jacobo P, et al.Chemical stimulation applied in geothermal fields of EL SALVADOR, years 2000-2009[R].Santa Tecla:UNU-GTP, LaGeo, 2011.
[55] Wang Y, Liu Y G, Bian K, et al.Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China[J].Journal of Groundwater Science and Engineering, 2020, 8(4):305-314.
[56] 马峰, 王潇媛, 王贵玲, 等.浅层地热能与干热岩资源潜力及其开发前景对比分析[J].科技导报, 2015, 33(19):49-53.
[57] 王贵玲, 马峰, 蔺文静, 等.干热岩资源开发工程储层激发研究进展[J].科技导报, 2015, 33(11):103-107.
[58] Schumacher S, Schulz R.Effectiveness of acidizing geothermal wells in the south German molasse basin[J].Geothermal Energy Science, 2013, 1(1):1-11.
[59] 徐浩然, 程镜如, 赵志宏.华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J].地质学报, 2020, 94(7):2157-2165.
[60] 马忠平, 杜槟, 鲍卫和, 等.酸化压裂工艺在地热井中的应用[J].探矿工程(岩土钻掘工程), 2007, 34(2):45-47.
[61] 何铁柱, 孙振添.酸化压裂工艺在浙江桐乡地热井增产中的应用[J].城市地质, 2019, 14(4):49-54.
[62] 朱咸涛.酸压技术在碳酸盐岩低效地热井中的应用[J].石化技术, 2021, 28(6):107-108.
[63] 李文, 孔祥军, 袁利娟, 等.北京通州地区地热井酸化压裂增灌试验研究[J].城市地质, 2019, 14(4):43-48.
[64] 马峰, 王贵玲, 张薇, 等.雄安新区容城地热田热储空间结构及资源潜力[J].地质学报, 2020, 94(7):1981-1990.
[65] 王颖晋, 马峰, 谢和平, 等.雄安新区容城地热田蓟县系热储裂隙表征与聚热特征研究[J].地质学报, 2021, 95(6):1902-1914.
Outlines

/