Reviews

Application of standing wave-traveling wave hybrid drive in acoustic levitation and transportation

  • DONG Huijuan ,
  • MU Guanyu ,
  • LI Tianlong
Expand
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Received date: 2020-07-13

  Revised date: 2022-02-15

  Online published: 2022-04-27

Abstract

The acoustic levitation and transportation is widely used in the fields of the material preparation, the biochemical analysis and the advanced electronic manufacturing. The devices for that purposes often have a simple structure, can make flexible transportations, with a fast speed and a long distance, and enjoy a wide application range. The calculation methods of the acoustic radiation force, as the theoretical basis of the acoustic levitation and transportation, are reviewed; as well as the limitations of different methods with respect to the size of the object, the distance and the speed of the transportation; finally, some potential problems of the standing wave-traveling wave hybrid drive method in the acoustic levitation and transportation are analyzed and the potential applications of the acoustic levitation and transportation are prospected.

Cite this article

DONG Huijuan , MU Guanyu , LI Tianlong . Application of standing wave-traveling wave hybrid drive in acoustic levitation and transportation[J]. Science & Technology Review, 2022 , 40(6) : 73 -82 . DOI: 10.3981/j.issn.1000-7857.2022.06.009

References

[1] 刘建党, 刘攀, 肖子凡, 等. TFT-LCD基板玻璃的市场现状及发展趋势[J]. 玻璃, 2018, 45(2):16-20.
[2] Sundvik M, Nieminen H J, Salmi A, et al. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos[J]. Scientific Reports, 2015, 5(1):1-11.
[3] Wood B R, Heraud P, Stojkovic S, et al. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells[J]. Analytical Chemistry, 2005, 77(15):4955-4961.
[4] Santesson S, Andersson M, Degerman E, et al. Airborne cell analysis[J]. Analytical Chemistry, 2000, 72(15):3412-3418.
[5] Xie W, Cao C, Lü Y, et al. Acoustic method for levitation of small living animals[J]. Applied Physics Letters, 2006, 89(21):214102.
[6] Beyer R T. Radiation pressure-The history of a mislabeled tensor[J]. The Journal of the Acoustical Society of America, 1978, 63(4):1025-1030.
[7] King L V. On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society of London. Series AMathematical and Physical Sciences, 1934, 147(861):212-240.
[8] Gor'kov L P. On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Soviet Physics Doklady, 1962, 6:773-775.
[9] Xie W, Wei B. Dependence of acoustic levitation capabilities on geometric parameters[J]. Physical Review E, 2002, 66(2):026605.
[10] Xie W, Cao C, Lü Y, et al. Levitation of iridium and liquid mercury by ultrasound[J]. Physical Review Letters, 2002, 89(10):104304.
[11] Kundt A. Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen[J]. Annalen der Physik, 1866, 203(4):497-523.
[12] Weber R J, Benmore C J, Tumber S K, et al. Acoustic levitation:Recent developments and emerging opportunities in biomaterials research[J]. European Biophysics Journal, 2012, 41(4):397-403.
[13] Kashima R, Koyama D, Matsukawa M. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2015, 62(12):2161-2168.
[14] Masuda K, Koyama D, Matsukawa M. Noncontact transportation of planar object in an ultrasound waveguide[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2018, 65(11):2160-2166.
[15] Weber J, Rey C, Neuefeind J, et al. Acoustic levitator for structure measurements on low temperature liquid droplets[J]. Review of Scientific Instruments, 2009, 80(8):083904.
[16] Kashima R, Murakami S, Koyama D, et al. Design of a junction for a noncontact ultrasonic transportation system[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2014, 61(6):1024-1032.
[17] Nakamura K, Koyama D. Non-contact transportation system of small objects using Ultrasonic Waveguides[C]//IOP Conference Series:Materials Science and Engineering. Madrid:IOP Publishing, 2012:012014.
[18] Koyama D, Nakamura K. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2010, 57(6):1434-1442.
[19] Hoshi T, Ochiai Y, Rekimoto J. Three-dimensional non-contact manipulation by opposite ultrasonic phased arrays[J]. Japanese Journal of Applied Physics, 2014, 53(7S):07KE07.
[20] Ochiai Y, Hoshi T, Rekimoto J. Pixie dust:Graphics generated by levitated and animated objects in computational acoustic-potential field[J]. ACM Transactions on Graphics, 2014, 33(4):1-13.
[21] Foresti D, Nabavi M, Klingauf M, et al. Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Sciences, 2013, 110(31):12549-12554.
[22] Hashimoto Y, Koike Y, Ueha S. Transporting objects without contact using flexural traveling waves[J]. The Journal of the Acoustical Society of America, 1998, 103(6):3230-3233.
[23] Ito Y, Koyama D, Nakamura K. High-speed noncontact ultrasonic transport of small objects using acoustic traveling wave field[J]. Acoustical Science Technology, 2010, 31(6):420-422.
[24] Ding M, Koyama D, Nakamura K. Noncontact ultrasonic transport of liquid using a flexural vibration plate[J]. Applied Physics Express, 2012, 5(9):097301.
[25] Ide T, Friend J R, Nakamura K, et al. A low-profile design for the noncontact ultrasonically levitated stage[J]. Japanese Journal of Applied Physics, 2005, 44(6S):4662.
[26] Koyama D, Nakamura K. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2010, 57(5):1152-1159.
[27] Kozuka T, Tuziuti T, Mitome H, et al. Control of a standing wave field using a line-focused transducer for twodimensional manipulation of particles[J]. Japanese Journal of Applied Physics, 1998, 37(5S):2974.
[28] Foresti D, Nabavi M, Poulikakos D. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator[J]. The Journal of the Acoustical Society of America, 2012, 131(2):1029-1038.
[29] Matsui T, Ohdaira E, Masuzawa N, et al. Translation of an object using phase-controlled sound sources in acoustic levitation[J]. Japanese Journal of Applied Physics, 1995, 34(5S):2771.
[30] Kozuka T, Yasui K, Tuziuti T, et al. Noncontact acoustic manipulation in air[J]. Japanese Journal of Applied Physics, 2007, 46(7S):4948.
[31] Marzo A, Barnes A, Drinkwater B W. TinyLev:A multiemitter single-axis acoustic levitator[J]. Review of Scientific Instruments, 2017, 88(8):085105.
[32] Dong H, Jia L, Guan Y, et al. Experiments and simulations of the standing wave acoustic field produced by two transducers mounted in contraposition[C]//Proceedings of Meetings on Acoustics 6ICU. Honolulu, Hawaii:Acoustical Society of America, 2017:065002.
[33] Park J K, Ro P I. Noncontact manipulation of light objects based on parameter modulations of acoustic pressure nodes[J]. Journal of Vibration Acoustics, 2013, 135(3):031011.
[34] Andrade M A, Perez N, Buiochi F, et al. Matrix method for acoustic levitation simulation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2011, 58(8):1674-1683.
[35] Foresti D, Sambatakakis G, Bottan S, et al. Morphing surfaces enable acoustophoretic contactless transport of ultrahigh-density matter in air[J]. Scientific Reports, 2013, 3:3176.
[36] Dong H, Liu S, Guan Y, et al. Simulation of particle transportation trajectory in acoustic standing wave field[C]//201622nd International Conference on Automation and Computing (ICAC). Piscataway:IEEE, 2016:208-211.
[37] 贾串玲. 超声驻波悬浮传输装置的研制与实验[D]. 哈尔滨:哈尔滨工业大学, 2015.
[38] Ueha S, Hashimoto Y, Koike Y. Non-contact transportation using near-field acoustic levitation[J]. Ultrasonics, 2000, 38(1-8):26-32.
[39] Koyama D, Ide T, Friend J R, et al. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2007, 54(3):597-604.
[40] Ide T, Friend J, Nakamura K, et al. A non-contact linear bearing by ultrasonic levitation[C]//Proceedings of the World Congress on Ultrasonics 2003. Paris, France, 2004:471-472.
[41] Mu G, Zhao J, Dong H, et al. Structural parameter study of dual transducers-type ultrasonic levitation-based transportation system[J]. Smart Materials and Structures, 2021, 30(4):045009.
Outlines

/