[1] 刘建党, 刘攀, 肖子凡, 等. TFT-LCD基板玻璃的市场现状及发展趋势[J]. 玻璃, 2018, 45(2):16-20.
[2] Sundvik M, Nieminen H J, Salmi A, et al. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos[J]. Scientific Reports, 2015, 5(1):1-11.
[3] Wood B R, Heraud P, Stojkovic S, et al. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells[J]. Analytical Chemistry, 2005, 77(15):4955-4961.
[4] Santesson S, Andersson M, Degerman E, et al. Airborne cell analysis[J]. Analytical Chemistry, 2000, 72(15):3412-3418.
[5] Xie W, Cao C, Lü Y, et al. Acoustic method for levitation of small living animals[J]. Applied Physics Letters, 2006, 89(21):214102.
[6] Beyer R T. Radiation pressure-The history of a mislabeled tensor[J]. The Journal of the Acoustical Society of America, 1978, 63(4):1025-1030.
[7] King L V. On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society of London. Series AMathematical and Physical Sciences, 1934, 147(861):212-240.
[8] Gor'kov L P. On the forces acting on a small particle in an acoustical field in an ideal fluid[J]. Soviet Physics Doklady, 1962, 6:773-775.
[9] Xie W, Wei B. Dependence of acoustic levitation capabilities on geometric parameters[J]. Physical Review E, 2002, 66(2):026605.
[10] Xie W, Cao C, Lü Y, et al. Levitation of iridium and liquid mercury by ultrasound[J]. Physical Review Letters, 2002, 89(10):104304.
[11] Kundt A. Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen[J]. Annalen der Physik, 1866, 203(4):497-523.
[12] Weber R J, Benmore C J, Tumber S K, et al. Acoustic levitation:Recent developments and emerging opportunities in biomaterials research[J]. European Biophysics Journal, 2012, 41(4):397-403.
[13] Kashima R, Koyama D, Matsukawa M. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2015, 62(12):2161-2168.
[14] Masuda K, Koyama D, Matsukawa M. Noncontact transportation of planar object in an ultrasound waveguide[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2018, 65(11):2160-2166.
[15] Weber J, Rey C, Neuefeind J, et al. Acoustic levitator for structure measurements on low temperature liquid droplets[J]. Review of Scientific Instruments, 2009, 80(8):083904.
[16] Kashima R, Murakami S, Koyama D, et al. Design of a junction for a noncontact ultrasonic transportation system[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2014, 61(6):1024-1032.
[17] Nakamura K, Koyama D. Non-contact transportation system of small objects using Ultrasonic Waveguides[C]//IOP Conference Series:Materials Science and Engineering. Madrid:IOP Publishing, 2012:012014.
[18] Koyama D, Nakamura K. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2010, 57(6):1434-1442.
[19] Hoshi T, Ochiai Y, Rekimoto J. Three-dimensional non-contact manipulation by opposite ultrasonic phased arrays[J]. Japanese Journal of Applied Physics, 2014, 53(7S):07KE07.
[20] Ochiai Y, Hoshi T, Rekimoto J. Pixie dust:Graphics generated by levitated and animated objects in computational acoustic-potential field[J]. ACM Transactions on Graphics, 2014, 33(4):1-13.
[21] Foresti D, Nabavi M, Klingauf M, et al. Acoustophoretic contactless transport and handling of matter in air[J]. Proceedings of the National Academy of Sciences, 2013, 110(31):12549-12554.
[22] Hashimoto Y, Koike Y, Ueha S. Transporting objects without contact using flexural traveling waves[J]. The Journal of the Acoustical Society of America, 1998, 103(6):3230-3233.
[23] Ito Y, Koyama D, Nakamura K. High-speed noncontact ultrasonic transport of small objects using acoustic traveling wave field[J]. Acoustical Science Technology, 2010, 31(6):420-422.
[24] Ding M, Koyama D, Nakamura K. Noncontact ultrasonic transport of liquid using a flexural vibration plate[J]. Applied Physics Express, 2012, 5(9):097301.
[25] Ide T, Friend J R, Nakamura K, et al. A low-profile design for the noncontact ultrasonically levitated stage[J]. Japanese Journal of Applied Physics, 2005, 44(6S):4662.
[26] Koyama D, Nakamura K. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2010, 57(5):1152-1159.
[27] Kozuka T, Tuziuti T, Mitome H, et al. Control of a standing wave field using a line-focused transducer for twodimensional manipulation of particles[J]. Japanese Journal of Applied Physics, 1998, 37(5S):2974.
[28] Foresti D, Nabavi M, Poulikakos D. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator[J]. The Journal of the Acoustical Society of America, 2012, 131(2):1029-1038.
[29] Matsui T, Ohdaira E, Masuzawa N, et al. Translation of an object using phase-controlled sound sources in acoustic levitation[J]. Japanese Journal of Applied Physics, 1995, 34(5S):2771.
[30] Kozuka T, Yasui K, Tuziuti T, et al. Noncontact acoustic manipulation in air[J]. Japanese Journal of Applied Physics, 2007, 46(7S):4948.
[31] Marzo A, Barnes A, Drinkwater B W. TinyLev:A multiemitter single-axis acoustic levitator[J]. Review of Scientific Instruments, 2017, 88(8):085105.
[32] Dong H, Jia L, Guan Y, et al. Experiments and simulations of the standing wave acoustic field produced by two transducers mounted in contraposition[C]//Proceedings of Meetings on Acoustics 6ICU. Honolulu, Hawaii:Acoustical Society of America, 2017:065002.
[33] Park J K, Ro P I. Noncontact manipulation of light objects based on parameter modulations of acoustic pressure nodes[J]. Journal of Vibration Acoustics, 2013, 135(3):031011.
[34] Andrade M A, Perez N, Buiochi F, et al. Matrix method for acoustic levitation simulation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2011, 58(8):1674-1683.
[35] Foresti D, Sambatakakis G, Bottan S, et al. Morphing surfaces enable acoustophoretic contactless transport of ultrahigh-density matter in air[J]. Scientific Reports, 2013, 3:3176.
[36] Dong H, Liu S, Guan Y, et al. Simulation of particle transportation trajectory in acoustic standing wave field[C]//201622nd International Conference on Automation and Computing (ICAC). Piscataway:IEEE, 2016:208-211.
[37] 贾串玲. 超声驻波悬浮传输装置的研制与实验[D]. 哈尔滨:哈尔滨工业大学, 2015.
[38] Ueha S, Hashimoto Y, Koike Y. Non-contact transportation using near-field acoustic levitation[J]. Ultrasonics, 2000, 38(1-8):26-32.
[39] Koyama D, Ide T, Friend J R, et al. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2007, 54(3):597-604.
[40] Ide T, Friend J, Nakamura K, et al. A non-contact linear bearing by ultrasonic levitation[C]//Proceedings of the World Congress on Ultrasonics 2003. Paris, France, 2004:471-472.
[41] Mu G, Zhao J, Dong H, et al. Structural parameter study of dual transducers-type ultrasonic levitation-based transportation system[J]. Smart Materials and Structures, 2021, 30(4):045009.