Reviews

Research progress of spray cooling technology for avionics

  • QI Wenliang ,
  • WANG Wanren ,
  • YANG Yuwei ,
  • LI Hao ,
  • LIU Tingting
Expand
  • 1. Aeronautics Computing Technique Research Institute, Aviation Industry Corporation of China, Xi'an 710065, China;
    2. School of Mechanical Engineering, NorthwesternPolytechnical University, Xi'an710072, China;
    3. Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710100, China

Received date: 2021-07-19

  Revised date: 2021-11-11

  Online published: 2022-04-20

Abstract

With the rapid development of semiconductor technology, conventional cooling methods are difficult to meet the stricter heat dissipation requirements of electronic equipment. The spray cooling technology has become an effective method to solve the heat dissipation of highly integrated avionics due to its high heat transfer efficiency, uniform temperature at the heat exchange surface and less usage of working medium. We introduce the working principle of spray cooling in this paper. The influence factors of spray cooling technology are analyzed in terms of spray characteristics, coolant characteristics and surface characteristics We also summarize the research status of spray cooling technology in avionics. Finally, we point out the challenges for spray cooling technology under different gravities and accelerated vibration environment, and predict the future development trend of this technology for avionics.

Cite this article

QI Wenliang , WANG Wanren , YANG Yuwei , LI Hao , LIU Tingting . Research progress of spray cooling technology for avionics[J]. Science & Technology Review, 2022 , 40(5) : 95 -104 . DOI: 10.3981/j.issn.1000-7857.2022.05.011

References

[1] Hamann H F, Weger A, Lacey J A, et al.Hotspot-limited microprocessors:Direct temperature and power distribu-tion measurements[J].IEEE Journal of Solid-State Cir-cuits, 2006, 42(1):56-65.
[2] Chen R H, Chow L C, Navedo J E.Effects of spray char-acteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Trans-fer, 2002, 45(19):4033-4043.
[3] Sienski K, Eden R, Schaefer D.3-Delectronic intercon-nect packaging[C]//1996 IEEE proceedings aerospace ap-plications conference.Piscataway, NJ:IEEE, 1996.
[4] Pais M R, Chow L C, Mahefkey E T.Surface roughness and its effects on the heat transfer mechanism in spray cooling[J].Journal of Heat Transfer, 1992, 114:211-219.
[5] Park M H, Kim S C.Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehi-cles[J].Applied Thermal Engineering, 2019, 152:582-593.
[6] Timothy A S.Next generation spray cooling:High heat flux management in compact spaces[J].Heat Transfer En-gineering, 2007, 28(2):87-92.
[7] Huddle J J, Chow L C, Lei S, et al.Thermal management of diode laser arrays[J].Sixteenth IEEE SEMI-THERM Symposium, 2000, 3:154-160.
[8] Silk E A, Golliher E L, Selvam R P.Spray cooling heat transfer:Technology overview and assessment of future challenges for micro-gravity application[J].Energy Con-version & Management, 2008, 49(3):453-468.
[9] Wang J X, Guo W, Xiong K, et al.Review of aerospaceoriented spray cooling technology[J].Progress in Aero-space Sciences, 2020, 116:100635.
[10] Liu H, Cai C, Jia M, et al.Experimental investigation on spray cooling with low-alcohol additives[J].Applied Thermal Engineering, 2019, 146(5):921-930.
[11] Gao X.Drop impact in spray cooling[D].Vancouver:The University of British Columbia, 2017.
[12] Hsieh S S, Tien C H.R-134a spray dynamics and im-pingement cooling in the non-boiling regime[J].Interna-tional Journal of Heat and Mass Transfer, 2007, 50(3/4):502-512.
[13] Pautsch A G, Shedd T A.Spray impingement cooling with single-and multiple-nozzle arrays.Part I:Heat transfer data using FC-72[J].International Journal of Heat and Mass Transfer, 2005, 48(15):3167-3175.
[14] Cheng W L, Han F Y, Liu Q N, et al.Spray characteris-tics and spray cooling heat transfer in the non-boiling regime[J].Fuel and Energy Abstracts, 2011, 36(5):3399-3405.
[15] Wang Y, Liu M, Dong L, et al.Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime[J].Experimental Thermal and Fluid Science, 2010, 34(7):933-942.
[16] Pautsch A G, Shedd T A.Adiabatic and diabatic mea-surements of the liquid film thickness during spray cool-ing with FC-72[J].International Journal of Heat and Mass Transfer, 2006, 49(15/16):2610-2618.
[17] Horacek B, Kiger K T, Kim J.Single nozzle spray cool-ing heat transfer mechanisms[J].International Journal of Heat and Mass Transfer, 2005, 48(8):1425-1438.
[18] Cheng W L, Zhang W W, Chen H, et al.Spray cooling and flash evaporation cooling:The current development and application[J].Renewable & Sustainable Energy Re-views, 2016, 55:614-628.
[19] Rini D P, Chen R H, Chow L C.Bubble behavior and heat transfer mechanism in FC-72 pool boiling[J].Ex-perimental Heat Transfer, 2001, 14(1):27-44.
[20] Eroglu H, Chigier N.Initial drop size and velocity distri-butions for airblast coaxial atomizers[J].Journal of Flu-ids Engineering, 1991, 113:453-459.
[21] Xie J L, Gan Z W, Wong T N, et al.Thermal effects on a pressure swirl nozzle in spray cooling[J].International Journal of Heat and Mass Transfer, 2014, 73:130-140.
[22] Cheng W L, Zhang W W, Jiang L J, et al.Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J].Applied Thermal Engineering, 2015, 80(5):160-167.
[23] Patil N G, Hotta T K.A review on cooling of discrete heated modules using liquid jet impingement[J].Fron-tiers in Heat and Mass Transfer, 2018, 11:16.
[24] Mehdi B, Saeed H.Electronics cooling with nanofluids:A critical review[J].Energy Conversion and Manage-ment, 2018, 172(15):438-456.
[25] Khandekar S, Sahu G, Muralidhar K, et al.Cooling of high-power LEDs by liquid sprays:Challenges and pros-pects[J].Applied Thermal Engineering, 2020, 184(1):115640.
[26] Sohel Murshed S M, Nieto de Castro C A.A critical re-view of traditional and emerging techniques and fluids for electronics cooling[J].Renewable & Sustainable En-ergy Reviews, 2017, 78:821-833.
[27] Chen H, Cheng W L, Zhang W W, et al.Energy saving evaluation of a novel energy system based on spray cool-ing for supercomputer center[J].Energy, 2017, 141(15):304-315.
[28] Zimmermann S, Meijer I, Tiwari M K, et al.Aquasar:A hot water cooled data center with direct energy reuse[J].Energy, 2012, 43(1):237-245.
[29] Kadam S T, Kumar R.Twenty first century cooling solu-tion:Microchannel heat sinks[J].International Journal of Thermal Sciences, 2014, 85:73-92.
[30] Liang G T, Mudawar I.Review of pool boiling enhance-ment with additives and nanofluids[J].International Jour-nal of Heat and Mass Transfer, 2018, 124:423-453.
[31] Hosseini S M, Safaei M R.New temperature, interfacial shell dependent dimensionless model for thermal con-ductivity of nanofluids[J].International Journal of Heat and Mass Transfer, 2017, 114:207-210.
[32] Hsieh S S, Leu H Y, Liu H H.Spray cooling characteris-tics of nanofluids for electronic power devices[J].Na-noscale Research Letters, 2015, 10(1):139.
[33] Ravikumar S V, Haldar K, Jha J M, et al.Heat transfer enhancement using air-atomized spray cooling with wa-ter-Al 2O3 nanofluid[J].International Journal of Thermal Sciences, 2015, 96:85-93.
[34] Chen J, Xu R N, Zhang Z, et al.Phenomenon and mech-anism of spray cooling on nanowire arrayed and hybrid Micro/nano structured surfaces[J].Journal of Heat Trans-fer, 2018, 140(11):112401.
[35] Bostanci H, Altalidi S S, Nasrazadani S.Two-phase spray cooling with HFC-134a and HFO-1234yf on prac-tical enhanced surfaces[J].Applied Thermal Engineer-ing, 2017, 131(25):150-158.
[36] Wei J, Zhang Y, Zhao J F, et al.Enhanced heat transfer of flow boiling combined with jet impingement[J].Interfa-cial Phenomena and Heat Transfer, 2013, 1(1):13-28
[37] Zhang Z, Jiang P X, Christopher D M, et al.Experimen-tal investigation of spray cooling on micro-, nano-and hybrid-structured surfaces[J].International Journal of Heat and Mass Transfer, 2015, 80:26-37.
[38] Zhang Z, Jiang P X, Ouyang X L, et al.Experimental in-vestigation of spray cooling on smooth and micro-struc-tured surfaces[J].International Journal of Heat and Mass Transfer, 2014, 76:366-375
[39] Chen X, Chen J N, Ouyang X, et al.Water droplet spreading and wicking on nanostructured surfaces[J].Langmuir, 2017, 33(27):6701-6707.
[40] Li X, Wang G, Zhan B, et al.A novel icephobic strate-gy:The fabrication of biomimetic coupling micropatterns of superwetting surface[J].Advanced Materials Interfac-es, 2019, 6(19):1900864.
[41] Nguyen C T, Galanis N, Polidori G, et al.An experimen-tal study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid[J].Internation-al Journal of Thermal Sciences, 2009, 48(2):401-411.
[42] Qi W L, Weisensee P B.Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces[J].Physics of Fluids, 2020, 32:067110.
[43] Thiagarajan S J, Narumanchi S, Yang R.Effect of flow rate and subcooling on spray heat transfer on micropo-rous copper surfaces[J].International Journal of Heat and Mass Transfer, 2014, 69:493-505.
[44] Srikar R, Gambaryan-Roisman T, Steffes C, et al.Nano-fiber coating of surfaces for intensification of drop or spray impact cooling[J].International Journal of Heat and Mass Transfer, 2009, 52(25):5814-5826.
[45] Wang J X, Li Y Z, Zhang H S, et al.Investigation of a spray cooling system with two nozzles for space applica-tion[J].Applied Thermal Engineering, 2015, 89(5):115-124.
[46] Zhang W W, Cheng W L, Shao S D, et al.Integrated thermal control and system assessment in plug-chip spray cooling enclosure[J].Applied Thermal Engineer-ing, 2016, 108(5):104-114.
[47] Hua C, Cheng W L, Peng Y H, et al.Experimental study on optimal spray parameters of piezoelectric atom-izer based spray cooling[J].International Journal of Heat and Mass Transfer, 2016, 103:57-56
[48] Cheng W L, Peng Y H, Hua C, et al.Experimental in-vestigation on the heat transfer characteristics of vacu-um spray flash evaporation cooling[J].International Jour-nal of Heat and Mass Transfer, 2016, 102:233-240.
[49] Liu J H, Xue R, Chen L, et al.Influence of chamber pressure on heat transfer characteristics of a closed loop R134-a spray cooling[J].Experimental Thermal and Flu-id Science, 2016, 75:89-95.
[50] Kandasamy R, Liu P, Feng H, et al.Spray cooling en-hancement studies using dielectric liquid[C]//IEEE 20th Electronics Packaging Technology Conference (EPTC).Piscataway, NJ:2018:473-476.
[51] Zhang W W, Li Y Y, Long W J, et al.Enhancement mechanism of high alcohol surfactant on spray cooling:Experimental study[J].International Journal of Heat and Mass Transfer, 2018, 126:363-376.
[52] Lin Y K, Zhou Z F, Fang Y, et al.Heat transfer perfor-mance and optimization of a close-loop R410A flash evaporation spray cooling[J].Applied Thermal Engineer-ing, 2019, 159:113966.
[53] Liu P, Kandasamy R, Feng H, et al.Influence of air on heat transfer of a closed-loop spray cooling system[J].Experimental Thermal and Fluid Science, 2020, 111:109903.
[54] Zhang Z, Li Q, Hu D.Experimental investigation on heat transfer characteristics of R1336mzz flash spray cooling[J].Applied Thermal Engineering, 2020, 174(25):115277.
[55] Elston L J, Yerkes K L, Thomas S K, et al.Cooling per-formance of a 16-nozzle array in variable gravity[J].Journal of Thermophysics and Heat Transfer, 2009, 23(3):571-581.
[56] 任哲钒.机载喷雾冷却特性的实验研究与数值模拟[D].南京:南京航空航天大学, 2016.
[57] Schmidt D K, Stevens J, Roney J.Near-space stationkeeping performance of a large high-altitude notional airship[J].Journal of Aircraft, 2007, 44(2):611-615.
[58] Sone K, Yoshida K, Oka T, et al.Spray cooling charac-teristics of water and FC-72 under reduced and elevat-ed gravity for space application[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Confer-ence.Piscataway, NJ:IEEE, 1996.
[59] Golliher E L, Zivich C P, Yao S C.Exploration of un-steady spray cooling for high power electronics at micro-gravity using NASA Glenn's drop tower[C].ASME Sum-mer Heat Transfer Conference, San Francisco:ASME, 2005:609-612.
[60] Yerkes K L, Michalak T E, Baysinger K M, et al.Vari-able-gravity effects on a single-phase partially-confined spray cooling system (Postprint)[J].Journal of Thermo-physics and Heat Transfer, 2006, 20(3):361-370.
[61] Zhang H S, Li Y Z, Wang S N, et al.Ground experimen-tal investigations into an ejected spray cooling system for space closed-loop application[J].Chinese Journal of Aeronautics, 2016, 29(3):64-72.
[62] Wang J, Li Y Z, Wang J.Transient performance and in-telligent combination control of a novel spray cooling loop system[J].Chinese Journal of Aeronautics, 2013, 26(5):1173-1181.
[63] Reis N C, Griffiths R F, Santos J M.Parametric study of liquid droplets impinging on porous surfaces[J].Applied Mathematical Modelling, 2008, 32(3):341-361.
[64] Silk E A, Bracken P.Spray cooling heat flux perfor-mance using POCO HTC foam[J].Journal of Thermo-physics and Heat Transfer, 2010, 24(1):157-164
[65] 王瑜, 蒋彦龙, 周年勇.机载喷雾冷却换热特性关键影响因素实验研究[J].中国测试, 2016, 42(5):18-23.
[66] Zhou Z, Chen B, Wang R, et al.Coupling effect of hypo-baric pressure and spray distance on heat transfer dy-namics of R134a pulsed flashing spray cooling[J].Exper-imental Thermal and Fluid Science, 2016, 70:96-104.
[67] 郭睿远.航空电子器件喷雾冷却研究[D].天津:中国民航大学, 2018.
[68] Dan Z, Chong D, Yan J, et al.Experimental study on static flash evaporation of aqueous NaCl solution at dif-ferent flash speed:Heat transfer characteristics[J].Inter-national Journal of Heat and Mass Transfer, 2013, 65:584-591.
[69] Golliher E, Romanin J, Kacher H, et al.Development of the compact flash evaporator system for exploration[J].SAE Technical Papers, 2007:2007-01-3204.
[70] Golliher E, Licari A, Jin T.Testing of a compact flash evaporator system for exploration[J].SAE Technical Pa-per, 2008:2008-01-2167.
[71] Althausen D M, Golliher E L.Testing of an R134a spray evaporative heat sink[J].SAE Technical Papers, 2008, No.2008-01-2165.
[72] Zhang Y, Pang L P, Xie Y Q, et al.Experimental investi-gation of spray cooling heat transfer on straight fin sur-face under acceleration conditions[J].Experimental Heat Transfer, 2015, 28(6):564-579.
[73] Wang Z, Xing Y M, Liu X, et al.Computer modeling of droplets impact on heat transfer during spray cooling un-der vibration environment[J].Applied Thermal Engineer-ing, 2016, 107(25):453-462.
[74] 王泽, 邢玉明, 刘鑫, 等.振动环境下喷雾冷却的临界热流密度模型[J].航空动力学报, 2018, 33(3):597-603.
[75] Kato M, Abe Y, Mori Y, et al.Spray cooling characteris-tics under reduced gravity[J].Journal of Thermophysics and Heat Transfer, 1995, 9(2):378-381.
[76] Silk E.Spray cooling and the next generation of NASA space flight[R].Greenbelt:NASA Goddard Space Flight Center, 2005.
[77] Johnston A, Stone D, Cader T.SprayCool command post platform for harsh military environments[C]//Twentyfourth Annual IEEE Semiconductor Thermal Measure-ment and Management Symposium.Piscataway, NJ:IEEE, 2008:112-117.
[78] Lin L.Thermal management research for power genera-tion.Delivery order 0002-volume 2:Closed-loop spray cooling of high-power semiconductor lasers[R].Dayton:Universal Energy Systems, Inc., 2002.
[79] Wang J X, Li Y Z, Zhang Y, et al.A hybrid cooling sys-tem combining self-adaptive single-phase mechanically pumped fluid loop and gravity-immune two-phase spray module[J].Energy Conversion and Management, 2018, 176(15):194-208.
[80] Wang J X, Li Y Z, Li G C, et al.Investigation of a gravi-ty-immune chip-level spray cooling for thermal protec-tion of laser-based wireless power transmission system[J].International Journal of Heat and Mass Transfer, 2017, 114:715-726.
[81] 刘双.高超声速飞行器热防护系统主动冷却机制与效能评估[D].哈尔滨:哈尔滨工业大学, 2010.
[82] 周年勇.机载喷雾冷却特性的实验与研究[D].南京:南京航空航天大学, 2015.
[83] Wang Y, Zhou N, Yang Z, et al.Experimental investiga-tion of aircraft spray cooling system with different heat-ing surfaces and different additives[J].Applied Thermal Engineering, 2016, 103(25):510-521.
[84] 刘然, 张磊, 张显.喷雾冷却技术在航天领域应用[J].真空与低温, 2018, 24(5):353-357.
Outlines

/