[1] Hamann H F, Weger A, Lacey J A, et al.Hotspot-limited microprocessors:Direct temperature and power distribu-tion measurements[J].IEEE Journal of Solid-State Cir-cuits, 2006, 42(1):56-65.
[2] Chen R H, Chow L C, Navedo J E.Effects of spray char-acteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Trans-fer, 2002, 45(19):4033-4043.
[3] Sienski K, Eden R, Schaefer D.3-Delectronic intercon-nect packaging[C]//1996 IEEE proceedings aerospace ap-plications conference.Piscataway, NJ:IEEE, 1996.
[4] Pais M R, Chow L C, Mahefkey E T.Surface roughness and its effects on the heat transfer mechanism in spray cooling[J].Journal of Heat Transfer, 1992, 114:211-219.
[5] Park M H, Kim S C.Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehi-cles[J].Applied Thermal Engineering, 2019, 152:582-593.
[6] Timothy A S.Next generation spray cooling:High heat flux management in compact spaces[J].Heat Transfer En-gineering, 2007, 28(2):87-92.
[7] Huddle J J, Chow L C, Lei S, et al.Thermal management of diode laser arrays[J].Sixteenth IEEE SEMI-THERM Symposium, 2000, 3:154-160.
[8] Silk E A, Golliher E L, Selvam R P.Spray cooling heat transfer:Technology overview and assessment of future challenges for micro-gravity application[J].Energy Con-version & Management, 2008, 49(3):453-468.
[9] Wang J X, Guo W, Xiong K, et al.Review of aerospaceoriented spray cooling technology[J].Progress in Aero-space Sciences, 2020, 116:100635.
[10] Liu H, Cai C, Jia M, et al.Experimental investigation on spray cooling with low-alcohol additives[J].Applied Thermal Engineering, 2019, 146(5):921-930.
[11] Gao X.Drop impact in spray cooling[D].Vancouver:The University of British Columbia, 2017.
[12] Hsieh S S, Tien C H.R-134a spray dynamics and im-pingement cooling in the non-boiling regime[J].Interna-tional Journal of Heat and Mass Transfer, 2007, 50(3/4):502-512.
[13] Pautsch A G, Shedd T A.Spray impingement cooling with single-and multiple-nozzle arrays.Part I:Heat transfer data using FC-72[J].International Journal of Heat and Mass Transfer, 2005, 48(15):3167-3175.
[14] Cheng W L, Han F Y, Liu Q N, et al.Spray characteris-tics and spray cooling heat transfer in the non-boiling regime[J].Fuel and Energy Abstracts, 2011, 36(5):3399-3405.
[15] Wang Y, Liu M, Dong L, et al.Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime[J].Experimental Thermal and Fluid Science, 2010, 34(7):933-942.
[16] Pautsch A G, Shedd T A.Adiabatic and diabatic mea-surements of the liquid film thickness during spray cool-ing with FC-72[J].International Journal of Heat and Mass Transfer, 2006, 49(15/16):2610-2618.
[17] Horacek B, Kiger K T, Kim J.Single nozzle spray cool-ing heat transfer mechanisms[J].International Journal of Heat and Mass Transfer, 2005, 48(8):1425-1438.
[18] Cheng W L, Zhang W W, Chen H, et al.Spray cooling and flash evaporation cooling:The current development and application[J].Renewable & Sustainable Energy Re-views, 2016, 55:614-628.
[19] Rini D P, Chen R H, Chow L C.Bubble behavior and heat transfer mechanism in FC-72 pool boiling[J].Ex-perimental Heat Transfer, 2001, 14(1):27-44.
[20] Eroglu H, Chigier N.Initial drop size and velocity distri-butions for airblast coaxial atomizers[J].Journal of Flu-ids Engineering, 1991, 113:453-459.
[21] Xie J L, Gan Z W, Wong T N, et al.Thermal effects on a pressure swirl nozzle in spray cooling[J].International Journal of Heat and Mass Transfer, 2014, 73:130-140.
[22] Cheng W L, Zhang W W, Jiang L J, et al.Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J].Applied Thermal Engineering, 2015, 80(5):160-167.
[23] Patil N G, Hotta T K.A review on cooling of discrete heated modules using liquid jet impingement[J].Fron-tiers in Heat and Mass Transfer, 2018, 11:16.
[24] Mehdi B, Saeed H.Electronics cooling with nanofluids:A critical review[J].Energy Conversion and Manage-ment, 2018, 172(15):438-456.
[25] Khandekar S, Sahu G, Muralidhar K, et al.Cooling of high-power LEDs by liquid sprays:Challenges and pros-pects[J].Applied Thermal Engineering, 2020, 184(1):115640.
[26] Sohel Murshed S M, Nieto de Castro C A.A critical re-view of traditional and emerging techniques and fluids for electronics cooling[J].Renewable & Sustainable En-ergy Reviews, 2017, 78:821-833.
[27] Chen H, Cheng W L, Zhang W W, et al.Energy saving evaluation of a novel energy system based on spray cool-ing for supercomputer center[J].Energy, 2017, 141(15):304-315.
[28] Zimmermann S, Meijer I, Tiwari M K, et al.Aquasar:A hot water cooled data center with direct energy reuse[J].Energy, 2012, 43(1):237-245.
[29] Kadam S T, Kumar R.Twenty first century cooling solu-tion:Microchannel heat sinks[J].International Journal of Thermal Sciences, 2014, 85:73-92.
[30] Liang G T, Mudawar I.Review of pool boiling enhance-ment with additives and nanofluids[J].International Jour-nal of Heat and Mass Transfer, 2018, 124:423-453.
[31] Hosseini S M, Safaei M R.New temperature, interfacial shell dependent dimensionless model for thermal con-ductivity of nanofluids[J].International Journal of Heat and Mass Transfer, 2017, 114:207-210.
[32] Hsieh S S, Leu H Y, Liu H H.Spray cooling characteris-tics of nanofluids for electronic power devices[J].Na-noscale Research Letters, 2015, 10(1):139.
[33] Ravikumar S V, Haldar K, Jha J M, et al.Heat transfer enhancement using air-atomized spray cooling with wa-ter-Al 2O3 nanofluid[J].International Journal of Thermal Sciences, 2015, 96:85-93.
[34] Chen J, Xu R N, Zhang Z, et al.Phenomenon and mech-anism of spray cooling on nanowire arrayed and hybrid Micro/nano structured surfaces[J].Journal of Heat Trans-fer, 2018, 140(11):112401.
[35] Bostanci H, Altalidi S S, Nasrazadani S.Two-phase spray cooling with HFC-134a and HFO-1234yf on prac-tical enhanced surfaces[J].Applied Thermal Engineer-ing, 2017, 131(25):150-158.
[36] Wei J, Zhang Y, Zhao J F, et al.Enhanced heat transfer of flow boiling combined with jet impingement[J].Interfa-cial Phenomena and Heat Transfer, 2013, 1(1):13-28
[37] Zhang Z, Jiang P X, Christopher D M, et al.Experimen-tal investigation of spray cooling on micro-, nano-and hybrid-structured surfaces[J].International Journal of Heat and Mass Transfer, 2015, 80:26-37.
[38] Zhang Z, Jiang P X, Ouyang X L, et al.Experimental in-vestigation of spray cooling on smooth and micro-struc-tured surfaces[J].International Journal of Heat and Mass Transfer, 2014, 76:366-375
[39] Chen X, Chen J N, Ouyang X, et al.Water droplet spreading and wicking on nanostructured surfaces[J].Langmuir, 2017, 33(27):6701-6707.
[40] Li X, Wang G, Zhan B, et al.A novel icephobic strate-gy:The fabrication of biomimetic coupling micropatterns of superwetting surface[J].Advanced Materials Interfac-es, 2019, 6(19):1900864.
[41] Nguyen C T, Galanis N, Polidori G, et al.An experimen-tal study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid[J].Internation-al Journal of Thermal Sciences, 2009, 48(2):401-411.
[42] Qi W L, Weisensee P B.Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces[J].Physics of Fluids, 2020, 32:067110.
[43] Thiagarajan S J, Narumanchi S, Yang R.Effect of flow rate and subcooling on spray heat transfer on micropo-rous copper surfaces[J].International Journal of Heat and Mass Transfer, 2014, 69:493-505.
[44] Srikar R, Gambaryan-Roisman T, Steffes C, et al.Nano-fiber coating of surfaces for intensification of drop or spray impact cooling[J].International Journal of Heat and Mass Transfer, 2009, 52(25):5814-5826.
[45] Wang J X, Li Y Z, Zhang H S, et al.Investigation of a spray cooling system with two nozzles for space applica-tion[J].Applied Thermal Engineering, 2015, 89(5):115-124.
[46] Zhang W W, Cheng W L, Shao S D, et al.Integrated thermal control and system assessment in plug-chip spray cooling enclosure[J].Applied Thermal Engineer-ing, 2016, 108(5):104-114.
[47] Hua C, Cheng W L, Peng Y H, et al.Experimental study on optimal spray parameters of piezoelectric atom-izer based spray cooling[J].International Journal of Heat and Mass Transfer, 2016, 103:57-56
[48] Cheng W L, Peng Y H, Hua C, et al.Experimental in-vestigation on the heat transfer characteristics of vacu-um spray flash evaporation cooling[J].International Jour-nal of Heat and Mass Transfer, 2016, 102:233-240.
[49] Liu J H, Xue R, Chen L, et al.Influence of chamber pressure on heat transfer characteristics of a closed loop R134-a spray cooling[J].Experimental Thermal and Flu-id Science, 2016, 75:89-95.
[50] Kandasamy R, Liu P, Feng H, et al.Spray cooling en-hancement studies using dielectric liquid[C]//IEEE 20th Electronics Packaging Technology Conference (EPTC).Piscataway, NJ:2018:473-476.
[51] Zhang W W, Li Y Y, Long W J, et al.Enhancement mechanism of high alcohol surfactant on spray cooling:Experimental study[J].International Journal of Heat and Mass Transfer, 2018, 126:363-376.
[52] Lin Y K, Zhou Z F, Fang Y, et al.Heat transfer perfor-mance and optimization of a close-loop R410A flash evaporation spray cooling[J].Applied Thermal Engineer-ing, 2019, 159:113966.
[53] Liu P, Kandasamy R, Feng H, et al.Influence of air on heat transfer of a closed-loop spray cooling system[J].Experimental Thermal and Fluid Science, 2020, 111:109903.
[54] Zhang Z, Li Q, Hu D.Experimental investigation on heat transfer characteristics of R1336mzz flash spray cooling[J].Applied Thermal Engineering, 2020, 174(25):115277.
[55] Elston L J, Yerkes K L, Thomas S K, et al.Cooling per-formance of a 16-nozzle array in variable gravity[J].Journal of Thermophysics and Heat Transfer, 2009, 23(3):571-581.
[56] 任哲钒.机载喷雾冷却特性的实验研究与数值模拟[D].南京:南京航空航天大学, 2016.
[57] Schmidt D K, Stevens J, Roney J.Near-space stationkeeping performance of a large high-altitude notional airship[J].Journal of Aircraft, 2007, 44(2):611-615.
[58] Sone K, Yoshida K, Oka T, et al.Spray cooling charac-teristics of water and FC-72 under reduced and elevat-ed gravity for space application[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Confer-ence.Piscataway, NJ:IEEE, 1996.
[59] Golliher E L, Zivich C P, Yao S C.Exploration of un-steady spray cooling for high power electronics at micro-gravity using NASA Glenn's drop tower[C].ASME Sum-mer Heat Transfer Conference, San Francisco:ASME, 2005:609-612.
[60] Yerkes K L, Michalak T E, Baysinger K M, et al.Vari-able-gravity effects on a single-phase partially-confined spray cooling system (Postprint)[J].Journal of Thermo-physics and Heat Transfer, 2006, 20(3):361-370.
[61] Zhang H S, Li Y Z, Wang S N, et al.Ground experimen-tal investigations into an ejected spray cooling system for space closed-loop application[J].Chinese Journal of Aeronautics, 2016, 29(3):64-72.
[62] Wang J, Li Y Z, Wang J.Transient performance and in-telligent combination control of a novel spray cooling loop system[J].Chinese Journal of Aeronautics, 2013, 26(5):1173-1181.
[63] Reis N C, Griffiths R F, Santos J M.Parametric study of liquid droplets impinging on porous surfaces[J].Applied Mathematical Modelling, 2008, 32(3):341-361.
[64] Silk E A, Bracken P.Spray cooling heat flux perfor-mance using POCO HTC foam[J].Journal of Thermo-physics and Heat Transfer, 2010, 24(1):157-164
[65] 王瑜, 蒋彦龙, 周年勇.机载喷雾冷却换热特性关键影响因素实验研究[J].中国测试, 2016, 42(5):18-23.
[66] Zhou Z, Chen B, Wang R, et al.Coupling effect of hypo-baric pressure and spray distance on heat transfer dy-namics of R134a pulsed flashing spray cooling[J].Exper-imental Thermal and Fluid Science, 2016, 70:96-104.
[67] 郭睿远.航空电子器件喷雾冷却研究[D].天津:中国民航大学, 2018.
[68] Dan Z, Chong D, Yan J, et al.Experimental study on static flash evaporation of aqueous NaCl solution at dif-ferent flash speed:Heat transfer characteristics[J].Inter-national Journal of Heat and Mass Transfer, 2013, 65:584-591.
[69] Golliher E, Romanin J, Kacher H, et al.Development of the compact flash evaporator system for exploration[J].SAE Technical Papers, 2007:2007-01-3204.
[70] Golliher E, Licari A, Jin T.Testing of a compact flash evaporator system for exploration[J].SAE Technical Pa-per, 2008:2008-01-2167.
[71] Althausen D M, Golliher E L.Testing of an R134a spray evaporative heat sink[J].SAE Technical Papers, 2008, No.2008-01-2165.
[72] Zhang Y, Pang L P, Xie Y Q, et al.Experimental investi-gation of spray cooling heat transfer on straight fin sur-face under acceleration conditions[J].Experimental Heat Transfer, 2015, 28(6):564-579.
[73] Wang Z, Xing Y M, Liu X, et al.Computer modeling of droplets impact on heat transfer during spray cooling un-der vibration environment[J].Applied Thermal Engineer-ing, 2016, 107(25):453-462.
[74] 王泽, 邢玉明, 刘鑫, 等.振动环境下喷雾冷却的临界热流密度模型[J].航空动力学报, 2018, 33(3):597-603.
[75] Kato M, Abe Y, Mori Y, et al.Spray cooling characteris-tics under reduced gravity[J].Journal of Thermophysics and Heat Transfer, 1995, 9(2):378-381.
[76] Silk E.Spray cooling and the next generation of NASA space flight[R].Greenbelt:NASA Goddard Space Flight Center, 2005.
[77] Johnston A, Stone D, Cader T.SprayCool command post platform for harsh military environments[C]//Twentyfourth Annual IEEE Semiconductor Thermal Measure-ment and Management Symposium.Piscataway, NJ:IEEE, 2008:112-117.
[78] Lin L.Thermal management research for power genera-tion.Delivery order 0002-volume 2:Closed-loop spray cooling of high-power semiconductor lasers[R].Dayton:Universal Energy Systems, Inc., 2002.
[79] Wang J X, Li Y Z, Zhang Y, et al.A hybrid cooling sys-tem combining self-adaptive single-phase mechanically pumped fluid loop and gravity-immune two-phase spray module[J].Energy Conversion and Management, 2018, 176(15):194-208.
[80] Wang J X, Li Y Z, Li G C, et al.Investigation of a gravi-ty-immune chip-level spray cooling for thermal protec-tion of laser-based wireless power transmission system[J].International Journal of Heat and Mass Transfer, 2017, 114:715-726.
[81] 刘双.高超声速飞行器热防护系统主动冷却机制与效能评估[D].哈尔滨:哈尔滨工业大学, 2010.
[82] 周年勇.机载喷雾冷却特性的实验与研究[D].南京:南京航空航天大学, 2015.
[83] Wang Y, Zhou N, Yang Z, et al.Experimental investiga-tion of aircraft spray cooling system with different heat-ing surfaces and different additives[J].Applied Thermal Engineering, 2016, 103(25):510-521.
[84] 刘然, 张磊, 张显.喷雾冷却技术在航天领域应用[J].真空与低温, 2018, 24(5):353-357.