Exclusive: Soil Ecology

Soil food web manipulation and ecological functions: Challenges and perspectives

  • ZHANG Weixin ,
  • SHEN Zhifeng ,
  • SONG Bo ,
  • MA Zihe ,
  • SHAO Yuanhu ,
  • FU Shenglei
Expand
  • College of Geography and Environmental Science, Henan University;Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education;Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Kaifeng 475004, China

Received date: 2021-07-01

  Revised date: 2021-12-01

  Online published: 2022-03-25

Abstract

Precision manipulation of soil food web is a critical point for exploring and enhancing the ecological functions of soil biota.In this study,we outline the current approaches to soil food web manipulation,discuss the present status and challenges of studies on the ecological functions of soil food web.The direct manipulation methods are limited in field application.Alternatively,soil food web could be indirectly manipulated but the manipulation consequences are likely not consistent due to the complexity of interactions.The figure of soil food web is still vague;the key stone taxa of soil food web and their contribution weights are difficult to be recognized;and finally the material cycling and energy flow in soil food web are not fully quantified.We suggest to explore the solutions from four dimensions:1) developing field technique systems for monitoring both soil food web and related ecological processes;2) developing simple and practicable techniques for field manipulation of soil food web;3) focusing on the soil food web-sphere;4) performing soil food web-related integrated studies of multiple scales,multiple factors and multiple processes.

Cite this article

ZHANG Weixin , SHEN Zhifeng , SONG Bo , MA Zihe , SHAO Yuanhu , FU Shenglei . Soil food web manipulation and ecological functions: Challenges and perspectives[J]. Science & Technology Review, 2022 , 40(3) : 52 -63 . DOI: 10.3981/j.issn.1000-7857.2022.03.005

References

[1] Wardle D A. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633.
[2] 傅声雷,张卫信,邵元虎,等.土壤生态学——土壤食物网及其生态功能[M].北京:科学出版社, 2019.
[3] van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572:194-198.
[4] Phillips H R P, Guerra C A, Bartz M L C, et al. Global distribution of earthworm diversity[J]. Science, 2019, 366(6464):480-485.
[5] Oliverio A M, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6:eaax8787.
[6] Bardgett R D, Wardle D A. Aboveground-belowground linkages:Biotic interactions, ecosystem processes, and global change[M]. Oxford:Oxford University Press, 2010.
[7] Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515:505-511.
[8] de Deyn G B, Raaijmakers C E, Zoomer H R, et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature, 2003, 422:711-713.
[9] Lino C A, Harper J C, Carney J P, et al. Delivering CRISPR:A review of the challenges and approaches[J]. Drug Delivery, 2018, 25(1):1234-1257.
[10] Blaser M J, Cardon Z G, Cho M K, et al. Toward a predictive understanding of earth's microbiomes to address 21st century challenges[J]. mBio, 2016, 7(3):e00714-16.
[11] Zhang W X, Fu S L. Special issue on the biodiversity and ecological functions of soil fauna[J]. Soil Ecology Letters, 2021, 3(2):83.
[12] Trevors J T. Sterilization and inhibition of microbial activity in soil[J]. Journal of Microbiological Methods, 1996, 26(1/2):53-59.
[13] Dietrich P, Cesarz S, Eisenhauer N, et al. Effects of steam sterilization on soil abiotic and biotic properties[J]. Soil Organisms, 2020, 92(2):99-108.
[14] McLaren A D. Radiation as a technique in soil biology and biochemistry[J]. Soil Biology and Biochemistry, 1969, 1(1):63-73.
[15] Berns A E, Philipp H, Narres H D, et al. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy[J]. European Journal of Soil Science, 2008, 59(3):540-550.
[16] 周玉田. 4种灭菌方法控制微生物限度的实验研究[J].现代中西医结合杂志, 2009, 18(22):2635-2637.
[17] Brodie G, Khan M J, Gupta D. Microwave soil treatment and plant growth[M]//Hasanuzzaman M, fujita M, Filho M C M T, et al. Sustainable crop production. Nogueira:IntechOpen, 2020.
[18] 曹金祥.低温等离子体灭菌方法与特点[J].现代物理知识, 1999(1):11-12.
[19] 陈芳艳,吴三女,宋莉,等.等离子体消毒灭菌的研究进展[J].中国消毒学杂志, 2021, 38(2):144-148.
[20] Xiong Y M, Shao Y H, Xia H P, et al. Selection of selective biocides on soil microarthropods[J]. Soil Biology and Biochemistry, 2008, 40(10):2706-2709.
[21] 谢越,杨高文,周翰舒,等.丛枝菌根真菌研究中土壤灭菌方法综述[J].草业科学, 2012, 29(5):724-732.
[22] 郑嘉慧,陈鸿洋,李金全,等.不同土壤灭菌方法对土壤微生物活性的影响[J].复旦学报(自然科学版), 2017, 56(6):681-691
[23] 朱建民,刘兆滨,董振鹏,等.环氧乙烷灭菌现状与发展[J].中国消毒学杂志, 2021, 38(5):373-376.
[24] Yan Y, Kuramae E E, Klinkhamer P G, et al. Revisiting the dilution procedure used to manipulate microbial biodiversity in terrestrial systems[J]. Applied and Environmental Microbiology, 2015, 81(13):4246-4252.
[25] Polyanskaya L M, Yumakov D D, Tyugay Z N, et al. Fungi and bacteria in the dark-humus forest soil[J]. Eurasian Soil Science, 2020, 53(9):1255-1259.
[26] Buchan D, Gebremikael M T, Ameloot N, et al. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores[J]. Soil Biology and Biochemistry, 2013, 60:142-155.
[27] Liu Z G, Zou X M. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest[J]. Ecological Applications, 2002, 12:1406-1417.
[28] Wardle D A, Hyodo F, Bardgett R D, et al. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest[J]. Ecology, 2011, 92:645-656.
[29] 申智锋,于彬彬,李素莉,等.长白山杨桦林不同蚯蚓类群对电击采样的响应及其影响因素[J].生态学杂志, 2020, 39(7):2374-2382.
[30] Lv M, Fu S, Shao Y, et al. Earthworm Pontoscolex corethrurus stimulated soil CO 2 emission by enhancing substrate availability rather than changing microbiota community structure[J]. Science of the Total Environment, 2020, 717:137227.
[31] 严珺,吴纪华.植物多样性对土壤动物影响的研究进展[J].土壤, 2018, 50(2):231-238.
[32] Shao Y H, Zhang W X, Eisenhauer N, et al. Exotic earthworms maintain soil biodiversity by altering bottomup effects of plants on the composition of soil microbial groups and nematode communities[J]. Biology and Fertility of Soils, 2019, 55:213-227.
[33] 于彬彬.不同气候带下的植物资源输入方式改变对土壤线虫和微生物群落的影响[D].开封:河南大学, 2019.
[34] 许梦秋,钟增明,龚琰,等.几丁质酶在植物病害生物防治中的应用[J].现代农业科技, 2010, 39(5):122-123.
[35] 李玉群,范成明.生物熏蒸法控制芸苔属植物土传病害[J].农业与技术, 2006, 26(2):57-60.
[36] Lv M, Shao Y, Lin Y, et al. Plants modify the effects of earthworms on the soil microbial community and its activity in a subtropical ecosystem[J]. Soil Biology and Biochemistry, 2016, 103:446-451.
[37] Fujii S, Berg M P, Cornelissen J H C. Living litter:Dynamic trait spectra predict fauna composition[J]. Trends in Ecology & Evolution, 2020, 35(10):886-896.
[38] Shao Y H, Zhang W X, Eisenhauer N, et al. Nitrogen deposition cancels out exotic earthworm effects on plantfeeding nematode communities[J]. Journal of Animal Ecology, 2017, 86:708-717.
[39] Kaspari M, Clay N A, Donoso D A, et al. Sodium fertilization increases termites and enhances decomposition in an Amazonian forest[J]. Ecology, 2014, 95(4):795-800.
[40] Jia Y Y, Kong X S, Weiser M D, et al. Sodium limits litter decomposition rates in a subtropical forest:Additional tests of the sodium ecosystem respiration hypothesis[J]. Applied Soil Ecology, 2015, 93:98-104.
[41] 贾艳艳,杜小凤,王伟中,等.钠添加对亚热带森林凋落物分解及其微生物活性的影响[J].东北林业大学学报, 2017, 45(11):39-44.
[42] Reich P B, Oleksyn J, Modrzynski J, et al. Linking litter calcium, earthworms and soil properties:A common garden test with 14 tree species[J]. Ecology Letters, 2005, 8(8):811-818.
[43] Yuan H, Zhang Z, Li M Y, et al. Biochar's role as an electron shuttle for mediating soil N2O emissions[J]. Soil Biology and Biochemistry, 2019, 133:94-96.
[44] 唐静,袁访,宋理洪.施用生物炭对土壤动物群落的影响研究进展[J].应用生态学报, 2020, 31(7):2473-2480.
[45] Sun Y, Chen H Y H, Jin L, et al. Drought stress induced increase of fungi:Bacteria ratio in a poplar plantation[J]. Catena, 2020, 193:104607.
[46] 彭艳,杨万勤,薛樵,等.季节性冻融期间土壤动物对高山草甸两种凋落叶木质素降解的影响[J].应用与环境生物学报, 2016, 22(2):300-306.
[47] 郑文静,吴建强,郭晋川,等.不同灌溉模式对广西蔗田大型土壤动物群落结构的影响[J].生态与农村环境学报, 2017, 33(8):722-729.
[48] Wall D H, Bradford M A, St John M G, et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent[J]. Global Change Biology, 2008, 14:2661-2677.
[49] Lin D, Wang F, Fanin N, et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability[J]. Soil Biology and Biochemistry, 2019, 136:107519.
[50] 刘亮亮,黄新琦,朱睿,等.强还原土壤对尖孢镰刀菌的抑制及微生物区系的影响[J].土壤, 2016, 48(1):88-94.
[51] 朱强根,朱安宁,张佳宝,等.长期施肥对黄淮海平原农田中小型土壤节肢动物的影响[J].生态学杂志, 2010, 29(1):69-74.
[52] Nocker A, Cheung C Y, Camper A K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells[J]. Journal of Microbiological Methods, 2006, 67:310-320.
[53] Cangelosi G A, Meschke J S. Dead or alive:Molecular assessment of microbial viability[J]. Applied and Environmental Microbiology, 2014, 80:5884-5891.
[54] Carini P, Marsden P, Leff J, et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity[J]. Nature Microbiology, 2017, 2:16242.
[55] Ni H, Jing X, Xiao X, et al. Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates[J]. ISME Journal, 2021, 15(9):2561-2573.
[56] Bienert F, De Danieli S, Miquel C, et al. Tracking earthworm communities from soil DNA[J]. Molecular Ecology, 2012, 21:2017-2030.
[57] Lammers Y, Clarke C L, Erséus C, et al. Clitellate worms (Annelida) in lateglacial and Holocene sedimentary DNA records from the Polar Urals and northern Norway[J]. Boreas, 2019, 48(2):317-329.
[58] Geisen S, Mitchell E A D, Adl S, et al. Soil protists:A fertile frontier in soil biology research[J]. FEMS Microbiology Reviews, 2018, 42(3):293-323.
[59] 王光华,刘俊杰,朱冬,等.土壤病毒的研究进展与挑战[J].土壤学报, 2020, 57(6):1319-1332.
[60] Wolkovich E M. Reticulated channels in soil food webs[J]. Soil Biology and Biochemistry, 2016, 102:18-21.
[61] Coleman D C, Zhang W X, Fu S. Toward a holistic approach to soils and plant growth[M]//Dighton J, Krumins J. Interactions in soil:Promoting plant growth. New York:Springer Science, 2014:211-223.
[62] Fu S L, Ferris H, Brown D, et al. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size?[J]. Soil Biology and Biochemistry, 2005, 37:1979-1987.
[63] Khalid S, Keller N P. Chemical signals driving bacterialfungal interactions[J]. Environmental Microbiology, 2021, 23(3):1334-1347.
[64] Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion:A review[J]. Annals of Microbiology, 2010, 60:579-598.
[65] Stone B W, Li J, Koch B J, et al. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community[J]. Nat Communications, 2021, 12:3381.
[66] Fan K, Delgado-Baquerizo M, Guo X, et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. ISME Journal, 2021, 15:550-561.
[67] van Groenigen J, Lubbers I, Vos H, et al. Earthworms increase plant production:A meta-analysis[J]. Scientific Reports, 2014, 4:6365.
[68] Liu T, Chen X, Gong X, et al. Earthworms coordinate soil biota to improve multiple ecosystem functions[J]. Current Biology, 2019, 29(20):3420-3429.
[69] Rousk J. Biomass or growth?How to measure soil food webs to understand structure and function[J]. Soil Biology and Biochemistry, 2016, 102:45-47.
[70] Bååth E. Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization-centrifugation[J]. Soil Biology and Biochemistry, 1992, 24:1157-1165.
[71] 赵灿灿,王伟.氚标记胸腺嘧啶掺入法在土壤细菌生长速率研究中的应用[J].热带亚热带植物学报, 2014, 22:101-106.
[72] Bååth E. Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique[J]. Biology and Fertility of Soils, 1994, 17:147-153.
[73] Bååth E. Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol[J]. Soil Biology and Biochemistry, 2001, 33:2011-2018.
[74] Basan M, Honda T, Christodoulou D, et al. A universal trade-off between growth and lag in fluctuating environments[J]. Nature, 2020, 584:470-474.
[75] Schwartz E. Characterization of growing microorganisms in soil by stable isotope probing with H218O[J]. Applied and Environmental Microbiology, 2007, 73:2541-2546.
[76] Qu L R, Wang C, Bai E. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency[J]. Soil Biology and Biochemistry, 2020, 145:107802.
[77] Wang X, Wang C, Cotrufo M, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover[J]. Global Change Biology, 2020, 26:5277-5289.
[78] He X X, Chen Y Q, Liu S J, et al. Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia[J]. Soil Biology & Biochemistry, 2018, 116:351-359.
[79] Anderson J M. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter[J]. Journal of Animal Ecology, 1975, 44:475-495.
[80] Fujii S, Takeda H. Succession of collembolan communities during decomposition of leaf and root litter:Effects of litter type and position[J]. Soil Biology and Biochemistry, 2012, 54:77-85.
[81] von Törne E. Assessing feeding activities of soil-living animals[J]. Pedobiologia, 1990, 34:89-101.
[82] Choi K-H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods, 1999, 36(3):203-213.
[83] Geisen S, Briones M J I, Gan H, et al. A methodological framework to embrace soil biodiversity[J]. Soil Biology and Biochemistry, 2019, 136:107536.
[84] 张卫信,申智锋,邵元虎,等.土壤生物与可持续农业研究进展[J].生态学报, 2020, 40(10):3183-3206.
[85] Whalen J K. Managing soil biota-mediated decomposition and nutrient mineralization in sustainable agroecosystems[J]. Advances in Agriculture, 2014, 2014:384604.
[86] 任继周.皇城滩和大马营草原调查报告[M].北京:畜牧兽医图书出版社, 1954.
[87] 任继周.划破草皮改良草原[M].兰州:甘肃民族出版社, 1965.
[88] 张卫信,陈迪马,赵灿灿.蚯蚓在生态系统中的作用[J].生物多样性, 2007, 15(2):142-153.
[89] Bender S F, van der Heijden M G A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses[J]. Journal of Applied Ecology, 2015, 52:228-239.
[90] Digel C, Curtsdotter A, Riede J, et al. Unravelling the complex structure of forest soil food webs:Higher omnivory and more trophic levels[J]. Oikos, 2014, 123:1157-1172.
Outlines

/