[1] Zhu N, Zhang D Y, Wang W L, et al.A novel coronavirus from patients with pneumonia in China, 2019[J].The New England Journal of Medicine, 2020, 382(8):727-733.
[2] Yang J, Li J, Lai S J, et al.Uncovering two phases of early intercontinental COVID-19 transmission dynamics[J].Journal of Travel Medicine, 2020, 27(8):taaa200.
[3] World Health Organization.WHO coronavirus disease (COVID-19) dashboard[EB/OL].[2021-12-22].https://covid19.who.int/.
[4] Tian H Y, Liu Y H, Li Y D, et al.An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J].Science, 2020, 368(6491):638-642.
[5] 国家卫生健康委员会.全力做好新型冠状病毒肺炎疫情防控工作[EB/OL].[2021-12-22].http://www.nhc.gov.cn/xcs/yqfkdt/gzbd_index.shtml.
[6] Lemey P, Ruktanonchai N, Hong S L, et al.Untangling introductions and persistence in COVID-19 resurgence in Europe[J].Nature, 2021, 595(7869):713-717.
[7] Ruktanonchai N W, Floyd J R, Lai S, et al.Assessing the impact of coordinated COVID-19 exit strategies across Europe[J].Science, 2020, 369(6510):1465-1470.
[8] Yang J, Niu P H, Chen L J, et al.Genetic tracing of HCoV-19 for the re-emerging outbreak of COVID-19 in Beijing, China[J].Protein & Cell, 2021, 12(1):4-6.
[9] Hannah R, Edouard M, Lucas Rodés-Guirao, et al.Coronavirus pandemic (COVID-19)[EB/OL].[2021-12-29].https://ourworldindata.org/coronavirus.
[10] Rossman H, Shilo S, Meir T, et al.Patterns of COVID-19 pandemic dynamics following deployment of a broad national immunization program[J].medRxiv, 2021, doi:10.1101/2021.02.08.21251325.
[11] Cohn B A, Cirillo P M, Murphy C C, et al.SARS-CoV-2 vaccine protection and deaths among US veterans during 2021[J].Science, 2021, doi:10.1126/science.abm0620.
[12] Goldberg Y, Mandel M, Bar-On Y M, et al.Waning immunity after the BNT162b2 vaccine in Israel[J].The New England Journal of Medicine, 2021, 385(24):e85.
[13] Bergwerk M, Gonen T, Lustig Y, et al.Covid-19 breakthrough infections in vaccinated health care workers[J].New England Journal of Medicine, 2021, 385(16):1474-1484.
[14] Barda N, Dagan N, Cohen C, et al.Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel:an observational study[J].Lancet, 2021, 398(10316):2093-2100.
[15] Mallapaty S.Closest known relatives of virus behind COVID-19 found in Laos[J].Nature, 2021, 597(7878):603.
[16] Chandler J C, Bevins S N, Ellis J W, et al.SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus)[J].Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(47):e2114828118.
[17] Zhou P, Yang X L, Wang X G, et al.A pneumonia outbreak associated with a new coronavirus of probable bat origin[J].Nature, 2020, 579(7798):270-273.
[18] World Health Organization.Tracking SARS-CoV-2 variants[EB/OL].[2021-12-22].https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
[19] Outbreak.info[EB/OL].[2021-11-17].https://outbreak.info/.
[20] GISAID[EB/OL].(2021-11-17)[2021-11-17].https://www.gisaid.org/.
[21] SARS-CoV-2(hCoV-19) mutation reports:Lineage|Mutation Tracker[EB/OL].[2021-12-23].https://outbreak.info/situation-reports/.
[22] Li B S, Deng A P, Li K B, et al.Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant[J].medRxiv, 2021, doi:10.1101/2021.07.07.21260122.
[23] World Health Organization.Enhancing readiness for Omicron (B.1.1.529):Technical brief and priority actions for member states[EB/OL].[2021-12-23].https://www.who.int/publications/m/item/enhancing-readinessfor-omicron-(b.1.1.529) -technical-brief-and-priorityactions-for-member-states.
[24] Wang Y P, Chen R C, Hu F Y, et al.Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China[J].EClinicalMedicine, 2021, 40:101129.
[25] Khan A, Wei D Q, Kousar K, et al.Preliminary structural data revealed that the SARS-CoV-2 B.1.617 variant's RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity[J].Chembiochem, 2021, 22(16):1-10.
[26] Korber B, Fischer W M, Gnanakaran S, et al.Tracking changes in SARS-CoV-2 spike:Evidence that D614G increases infectivity of the COVID-19 virus[J].Cell, 2020, 182(4):812-827.e19.
[27] Koyama T, Weeraratne D, Snowdon J L, et al.Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment[J].Pathogens, 2020, 9(5):324.
[28] Covariants.Overview of variants/mutations[EB/OL].[2021-12-23].https://covariants.org/variants.
[29] Nelson G, Buzko O, Spilman P, et al.Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant[J].bioRxiv, 2021, doi:10.1101/2021.01.13.426558.
[30] Wang Z, Schmidt F, Weisblum Y, et al.mRNA vaccineelicited antibodies to SARS-CoV-2 and circulating variants[J].Nature, 2021, 592(7855):616-622.
[31] Harvey W T, Carabelli A M, Jackson B, et al.SARSCoV-2 variants, spike mutations and immune escape[J].Nature Reviews Microbiology, 2021, 19(7):409-424.
[32] Niesen M J M, Silvert P A E, Suratekar R, et al.COVID-19 vaccines dampen genomic diversity of SARSCoV-2:Unvaccinated patients exhibit more antigenic mutational variance[J].medRxiv, 2021, doi:10.1101/2021.07.01.2125983.
[33] Tong Y G, Liu W L, Liu P P, et al.The origins of viruses:Discovery takes time, international resources, and cooperation[J].The Lancet, 2021, 398(10309):1401-1402.
[34] Liu K F, Pan X Q, Li L J, et al.Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species[J].Cell, 2021, 184(13):3438-3451.
[35] Zhou H, Chen X, Hu T, et al.A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein[J].Current biology, 2020, 30(11):2196-2203.e3.
[36] Delaune D, Hul V, Karlsson E A, et al.A novel SARSCoV-2 related coronavirus in bats from Cambodia[J].Nature communications, 2021, 12(1):6563.
[37] Mallapaty S.Coronaviruses closely related to the pandemic virus discovered in Japan and Cambodia[J].Nature, 2020, 588(7836):15-16.
[38] Wacharapluesadee S, Tan C W, Maneeorn P, et al.Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia[J].Nature communications, 2021, 12(1):972.
[39] Zhou H, Ji J K, Chen X, et al.Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses[J].Cell, 2021, 184(17):4380-4391.e14.
[40] Temmam S, Vongphayloth K, Salazar E B, et al.Coronaviruses with a SARS-CoV-2-like receptorbinding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula[J/OL].Research Square, 2021, doi:10.21203/rs.3.rs-871965/v1.
[41] OIE.OIE Members have been keeping the OIE updated on any investigations or outcomes of investigations in animals[EB/OL].[2021-12-24].https://www.oie.int/en/what-we-offer/emergency-and-resilience/covid-19/#uiid-3/.
[42] OIE.World Animal Health Information System[EB/OL].[2021-12-24].https://wahis.oie.int/#/home.
[43] CDC.Animals and COVID-19[EB/OL].(2021-11-18)[2021-12-24].https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html.
[44] Abdel-Moneim A S, Abdelwhab E M.Evidence for SARS-CoV-2 infection of animal hosts[J].Pathogens, 2020, 9(7):529.
[45] Bivins A, Greaves J, Fischer R, et al.Persistence of SARS-CoV-2 in Water and Wastewater[J].Environmental Science & Technology Letters, 2020, 7(12):937-942.
[46] Ai Y, Davis A, Jones D, et al.Wastewater-based epidemiology for tracking COVID-19 trend and variants of concern in Ohio, United States[J].Science of the Total Environment, 2021, 801:149757.
[47] Hale, V L, Dennis, P M, McBride D S, et al.SARSCoV-2 infection in free-ranging white-tailed deer (Odocoileus virginianus)[J].bioRxiv, 2021, doi:10.1101/2021.11.04.467308.
[48] Wang Q H, Zhang Y F, Wu L L, et al.Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J].Cell, 2020, 181(4):894-904.
[49] Wu L L, Chen Q, Liu K F, et al.Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2[J].Cell discovery, 2020, 6(1):68.
[50] Shi J Z, Wen Z Y, Zhong G X, et al.Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2[J].Science, 2020, 368(6494):1016-1020.
[51] Bosco-Lauth A M, Hartwig A E, Porter S M, et al.Experimental infection of domestic dogs and cats with SARS-CoV-2:Pathogenesis, transmission, and response to reexposure in cats[J].Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42):26382-26388.
[52] Kim Y I, Kim S G, Kim S M, et al.Infection and rapid transmission of SARS-CoV-2 in ferrets[J].Cell Host & Microbe, 2020, 27(5):704-709.
[53] Gaudreault N N, Trujillo J D, Carossino M, et al.SARSCoV-2 infection, disease and transmission in domestic cats[J].Emerging Microbes and Infections, 2020, 9(1):2322-2332.
[54] Csiszar A, Jakab F, Valencak T G, et al.Companion animals likely do not spread COVID-19 but may get infected themselves[J].GeroScience, 2020, 42(5):1229-1236.
[55] Schlottau K, Rissmann M, Graaf A, et al.SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens:An experimental transmission study[J].The Lancet Microbe, 2020, 1(5):218-225.
[56] Du X G, Guo Z H, Fan W H, et al.Establishment of a humanized swine model for COVID-19[J].Cell Discovery, 2021, 7(1):70.
[57] Wang T, Zhang N, Fan S, et al.Establishment of human distal lung organoids for SARS-CoV-2 infection.Cell Discovery, 2021, 7(1):108.
[58] Hoffmann M, Zhang L, Krüger N, et al.SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization[J].Cell Reports, 2021, 35(3):109017.
[59] World Health Organization.COVID-19-enmark[EB/OL].(2020-12-03)[2021-12-24].https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON301.
[60] Wang L, Didelot X, Bi Y H, et al.Assessing the extent of community spread caused by mink-derived SARSCoV-2 variants[J].Innovation, 2021, 28, 2(3):100128.
[61] European Food Safety Authority, European Centre for Disease Prevention and Control, Boklund A, et al.Monitoring of SARS-CoV-2 infection in mustelids[J].European Food Safety Authority Journal, 2021, 19(3):e06459.
[62] World Health Organization.COVID-19 vaccine tracker and landscape[EB/OL].[2021-11-24].https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
[63] Sinopharm Inc.The first anniversary of the world's first new crown inactivated vaccine[EB/OL].(2021-12-10)[2021-12-24].http://www.sinopharm.com/s/1223-4126-39942.html/.
[64] Sinovac Inc.COVID-19 Inactivated Vaccine(Vero Cell)-CoronaVac[EB/OL].(2021-12-23)[2021-12-24].http://www.sinovac.com.cn/product/showproduct.php?id=66.
[65] World Health Organization.Vaccine equity[EB/OL].[2021-12-29].https://www.who.int/campaigns/vaccine-equity.
[66] Haas E J, Angulo F J, McLaughlin J M, et al.Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel:an observational study using national surveillance data[J].Lancet, 2021, 397(10287):1819-1829.
[67] Borchering R K, Viboud C, Howerton E, et al.Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates and nonpharmaceutical intervention scenarios-United States, April-September 2021[J].Morbidity and Mortality Weekly Report, 2021, 70(19):719-724.
[68] Brown C M, Vostok J, Johnson H, et al.Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings barnstable county, massachusetts, July 2021[J].Morbidity and Mortality Weekly Report, 2021, 70(31):1059-1062.
[69] Levine-Tiefenbrun M, Yelin I, Alapi H, et al.Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2[J].Nature Medicine, 2021, 27:2108-2110.
[70] Singanayagam A, Hakki S, Dunning J, et al.Community transmission and viral load kinetics of the SARS-CoV-2 Delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK:A prospective, longitudinal, cohort study[J].Lancet Infectious Diseases, 2021, doi:10.1016/S1473-3099(21)00648-4.
[71] Bast E, Tang F, Dahn J, et al.Increased risk of hospitalisation and death with the delta variant in the USA[J].Lancet Infectious Diseases, 2021, 21(12):1629-1630.
[72] Lopez Bernal J, Andrews N, Gower C, et al.Effectiveness of Covid-19 vaccines against the B.1.617.2(Delta) variant[J].The New England Journal of Medicine, 2021, 385:585-594.
[73] Tang P, Hasan M R, Chemaitelly H, et al.BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar[J].Nature Medicine, 2021, doi:10.1038/s41591-021-01583-4.
[74] Wang K, Cao Y L, Zhou Y J, et al.2021.A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARSCoV-2[J].medRxiv, 2021, doi:10.1101/2021.09.02.212-61735.
[75] Bar-On Y M, Goldberg Y, Mandel M, et al.Protection of BNT162b2 vaccine booster against Covid-19 in Israel[J].The New England Journal of Medicine, 2021, 385(15):1393-1400.
[76] Mayo Clinic Staff.Comparing the differences between COVID-19 vaccines[EB/OL].(2021-12-18)[2021-12-24].https://www.mayoclinic.org/coronavirus-covid-19/vaccine/comparing-vaccines.
[77] Groß R, Zanoni M, Seidel A, et al.Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity[J].medRxiv, 2021, doi:10.1101/2021.05.30.21257971.
[78] Normark J, Vikström L, Gwon Y D, et al.Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination[J].The New England Journal of Medicine, 2021, 385(11):1049-1051.
[79] Li J X, Hou L H, Guo X L, et al.Heterologous primeboost immunization with CoronaVac and Convidecia[J].medRxiv, 2021, doi:10.1101/2021.09.03.21263062.
[80] Zhang J L, He Q, An C Q, et al.Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine[J].Emerging Microbes and Infections, 2021, 10(1):1598-1608.
[81] Tian X L, Li C, Huang A L, et al.Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody[J].Emerging Microbes and Infections, 2020, 9(1):382-385.
[82] Lan J, Ge J W, Yu J F, et al.Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor[J].Nature, 2020, 581(7807):215-220.
[83] Wang C Y, Li W T, Drabek D, et al.A human monoclonal antibody blocking SARS-CoV-2 infection[J].Nature Communications, 2020, 11(1):2251.
[84] Dai L P, Zheng T Y, Xu K, et al.A universal design of Betacoronavirus vaccines against COVID-19, MERS, and SARS[J].Cell, 2020, 182(3):722-733.
[85] Wu S P, Huang J Y, Zhang Z, et al.Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults:Preliminary report of an open-label and randomised phase 1 clinical trial[J].Lancet Infectious Diseases, 2021, 21(12):1654-1664.
[86] UNDP Data Futures Platform.Global Dashboard for Vaccine Equity[EB/OL].(2021-12-29)[2021-12-31].https://data.undp.org/vaccine-equity.
[87] 许叶春,柳红,李剑峰,等.抗新冠肺炎药物研究进展[J].中国生物工程杂志, 2021, 41(6):111-118.
[88] Hu B, Guo H, Zhou P, et al.Characteristics of SARSCoV-2 and COVID-19[J].Nature Reviews Microbiology, 2021, 19(3):141-154.
[89] 新冠病毒肺炎疫苗与治疗药物研发进展[EB/OL].(2021-09-30)[2021-12-24].https://mp.weixin.qq.com/s/xP6w4Np59vQxHZy_cry6aw.
[90] ClinicalTrials.gov[DB/OL].[2021-12-24].https://clinicaltrials.gov/ct2/results?cond=COVID-19.
[91] Zhou Y W, Xie Y, Tang L S, et al.Therapeutic targets and interventional strategies in COVID-19:Mechanisms and clinical studies[J].Signal Transduction & Targeted Therapy, 2021, 6(1):317.
[92] Brennan Z.WHO recommends against the use of convalescent plasma for Covid-19[EB/OL].(2021-12-06)[2021-12-24].https://endpts.com/who-recommends-against-the-use-of-convalescent-plasma-for-covid-19/.
[93] 关于印发新型冠状病毒肺炎诊疗方案(试行第八版修订版)的通知[EB/OL].(2021-04-05)[2021-12-24].http://www.nhc.gov.cn/yzygj/s7653p/202104/7de0b3837c-8b4606a0594aeb0105232b.shtml.
[94] Spinner C D, Gottlieb R L, Criner G J, et al.Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19:A randomized clinical trial[J].The Journal of the American Medical Association, 2020, 324(11):1048-1057.
[95] Mahase E.Covid-19:UK becomes first country to authorise antiviral molnupiravir[J].British Medical Journal, 2021, 375:n2697.
[96] Kabinger F, Stiller C, Schnitzová J, et al.Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis[J].Nature structural & molecular biology, 2021, 28(9):740-746.
[97] Menéndez-Arias L.Decoding molnupiravir-induced mutagenesis in SARS-CoV-2[J].The Journal of Biological Chemistry, 2021, 297(1):100867.
[98] Merck Inc.Merck and Ridgeback's investigational oral antiviral molnupiravir reduced the risk of hospitalization or death by approximately 50 percent compared to placebo for patients with mild or moderate COVID-19 in positive interim analysis of phase 3 study[EB/OL].(2021-10-01)[2021-12-24].https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-Molnupiravir-reduced-the-risk-of-hospitalization-or-deathby-approximately-50-percent-compared-to-placebofor-patients-with-mild-or-moderat/.
[99] Pfizer Inc.Pfizer's Covid pill remains 89% effective in final analysis, company says[EB/OL].(2021-12-14)[2021-12-24].https://www.statnews.com/2021/12/14/pfizerscovid-pill-remains-89-effective-in-final-analysis-company-says/.
[100] 史瑞,严景华.抗新型冠状病毒单克隆中和抗体药物研发进展[J].中国生物工程杂志, 2021, 41(6):129-135.
[101] Samrat S K, Tharappel A M, Li Z, et al.Prospect of SARS-CoV-2 spike protein:Potential role in vaccine and therapeutic development[J].Virus Research, 2020, 288:198141.
[102] Gottlieb R L, Nirula A, Chen P, et al.Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19:A randomized clinical trial[J].The Journal of the American Medical Association, 2021, 325(7):632-644.
[103] Hansen J, Baum A, Pascal K E, et al.Studies in humanized mice and convalescent humans yield a SARSCoV-2 antibody cocktail[J].Science, 2020, 369(6506):1010-1014.
[104] Pinto D, Park Y J, Beltramello M, et al.Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody[J].Nature, 2020, 583(7815):290-295.
[105] Pan Y B, Du J H, Liu J, et al.Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries[J].Cell Discovery, 2021, 7(1):57.
[106] Ju B, Zhang Q, Ge J W, et al.Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature, 2020, 584(7819):115-119.
[107] 深入解读:抗击变异的新冠病毒,有哪些药可用[EB/OL].(2021-09-09)[2021-12-24].https://mp.weixin.qq.com/s/MzGbanGQA7fcgUWXeyD5jQ.
[108] 深度解读:新冠口服药物来了,能代替疫苗终结疫情吗[EB/OL].(2021-11-08)[2021-12-24].https://mp.weixin.qq.com/s/jVojDMnW3yEvYseuj7ZO5Q.