Exclusive: Science and Technology Review in 2021

Review of 2021 global space science activities

  • SHI Peng ,
  • BAI Qingjiang ,
  • WANG Qin ,
  • LI Ming ,
  • FAN Quanlin
Expand
  • Space Science and Deep Space Exploration Study Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2021-12-28

  Revised date: 2022-01-07

  Online published: 2022-02-18

Abstract

Space science exploration in 2021 achieved fruitful outcoming. In this article we review the major results based on the data of space science missions, mainly in categories of astrophysics, heliophysics, planetary science and space earth science. Besides, we analyze the outstanding engineering success and science achievement of several solar system probes. These results include but not limited to:the man-made satellite for the first time touched the solar corona, a space hurricane in the Earth polar cap region was detected, two-billion-year-old lunar basalts sampling helped to better understand the lunar evolution history, Martian seismic data revealed the deep interior of Mars, persistent plasma waves were detected in interstellar space, and a new all-sky map of Milky Way was charted. Looking into the future, we also analyze two very important strategic plans released in that year, i.e., European Space Agency's Voyager 2050 and National Academy of Sciences' Astro2020. As to newborn Chinese space science missions, the science data of DAMPE mission was released, and science missions like InsightHXMT and Chang'e 5 were yielding world-class output.

Cite this article

SHI Peng , BAI Qingjiang , WANG Qin , LI Ming , FAN Quanlin . Review of 2021 global space science activities[J]. Science & Technology Review, 2022 , 40(1) : 64 -95 . DOI: 10.3981/j.issn.1000-7857.2022.01.004

References

[1] Wang X Y, Zheng X T, Xiao S, et al.GRB 210121A:A typical fireball burst detected by two small missions[J].The Astrophysical Journal, 2021, doi:10.3847/1538-4357/ac29bd.
[2] 范全林,白青江,时蓬.关于空间科学概念的若干考证[J].科技导报, 2020, 38(17):100-114.
[3] Conroy C, Naidu R P, Garavito-Camargo N, et al.Allsky dynamical response of the Galactic halo to the Large Magellanic Cloud[J].Nature, 2021, 592(7855):534-536.
[4] Kuhn M A, Benjamin R A, Zucker C, et al.A high pitch angle structure in the Sagittarius Arm[J].Astronomy & Astrophysics, 2021, doi:10.1051/0004-6361/202141198.
[5] Montalbán J, Mackereth J T, Miglio A, et al.Chronologically dating the early assembly of the milky way[J].Nature astronomy.2021, 5:640-647.
[6] Zhao G, Chen Y Q.Low-α metal-rich stars with sausage kinematics in the LAMOST survey:Are they from the Gaia-Sausage-Enceladus galaxy?[J].Science China Physics, Mechanics & Astronomy, 2021, 64(3):13-26.
[7] 徐玉朋,陈勇,董永伟.探索极端宇宙——从HXMT到eXTP和HERD[J].现代物理知识, 2021, 33(2):12-21.
[8] Stein R, van Velzen S, Kowalski M, et al.A tidal disruption event coincident with a high-energy neutrino[J].Nature Astronomy, 2021, 5(5):510-518.
[9] Connor T, Bañados E, Stern D, et al.Enhanced X-ray emission from the most radio-powerful quasar in the universe's first billion years[J].The Astrophysical Journal Letters, 2021, 911(2):120-131.
[10] Shi F Z, Li Z Y, Yuan F, et al.An energetic hot wind from the low-luminosity active galactic nucleus M81*[J].Nature Astronomy, 2021, 5(9):928-935.
[11] Wilkins D R, Gallo L C, Costantini E, et al.Light bending and X-ray echoes from behind a supermassive black hole[J].Nature, 2021, 595(7869):657-660.
[12] Paynter J, Webster R, Thrane E.Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst[J].Nature Astronomy, 2021, 5(6):560-568.
[13] Li C K, Lin L, Xiong S L, et al.HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J].Nature Astronomy, 2021, 5(4):378-384.
[14] You B, Tuo Y L, Li C Z, et al.Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070[J].Nature Communications, 2021, 12(1):1025.
[15] Weng S S, Cai Z Y, Zhang S N, et al.Time-lag between disk and corona radiation leads to hysteresis effect observed in black hole X-ray binary MAXI J1348-630[J].The Astrophysical Journal Letters, 2021, 915(1):L15.
[16] Delrez L, Ehrenreich D, Alibert Y, et al.Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS[J].Nature Astronomy, 2021, 5(8):775-787.
[17] Hedges C, Hughes A, Zhou G, et al.TOI-2076 and TOI-1807:Two young, comoving planetary systems within 50 pc identified by TESS that are ideal candidates for further follow Up[J].The Astronomical Journal, 2021, 162(2):54.
[18] Stefano R, Berndtsson J, Urquhart R, et al.A possible planet candidate in an external galaxy detected through X-ray transit[J].Nature Astronomy, 2021, 5(12):1297-1307.
[19] Hiramatsu D, Howell D, Van Dyk S D, et al.The electron-capture origin of supernova 2018zd[J].Nature Astronomy, 2021, 5(9):903-910.
[20] Ritter A, Parker Q A, Lykou F, et al.The remnant and origin of the historical supernova 1181 AD[J].The Astrophysical Journal Letters, 2021, 918(2):L33.
[21] Alfvén H.Existence of electromagnetic-hydrodynamic waves[J].Nature, 1942, 150(2):405-406.
[22] Kasper J C, Klein K G, Lichko E, et al.Parker Solar Probe enters the magnetically dominated solar corona[J].Physical Review Letters, 2021, 127(25):255101.
[23] Chen Y J, Przybylski D, Peter H, et al.Transient smallscale brightenings in the quiet solar corona:A model for camp fi res observed with Solar Orbiter[J].Astronomy & Astrophysics, 2021, 656:L7.
[24] Vadawale S V, Mithun N P S, Mondal B, et al.Observations of the quiet sun during the deepest solar minimum of the past century with Chandrayaan-2 XSM:Sub-aclass microflares outside active regions[J].The Astrophysical Journal Letters, 2021, 912:L13.
[25] Bahauddin S M, Bradshaw S J, Winebarger A R.The origin of reconnection-mediated transient brightenings in the solar transition region[J].Nature Astronomy, 2021, 5:237-245.
[26] Zhang Q H, Zhang Y L, Wang C, et al.A space hurricane over the Earth's polar ionosphere[J].Nature communications, 2021, doi:10.1038/s41467-021-21459-y.
[27] Ocker S K, Cordes J M, Chatterjee S, et al.Persistent plasma waves in interstellar space detected by Voyager 1[J].Nature Astronomy, 2021, 5(8):761-765.
[28] Uritsky V M, Deforest C E, Karpen J T, et al.Plumelets:Dynamic filamentary structures in solar coronal plumes[J].The Astrophysical Journal, 2021, 907(1):1.
[29] Mason E I, Antiochos S K, Vourlidas A.An observational study of a "Rosetta stone" solar eruption[J].The Astrophysical Journal Letter, 2021, 914(1):L8.
[30] Gizon L, Cameron R H, Bekki Y, et al.Solar inertial modes:Observations, identification, and diagnostic promise[J].Astronomy & Astrophysics, 2021, 652:L6.
[31] Simon A A, Hueso R, Sánchez-Lavega A, et al.Midsummer atmospheric changes in Saturn's northern hemisphere from the Hubble OPAL program[J].The Planetary Science Journal, 2021, 2(2):47.
[32] Zhang A B, Kong L G, Li W Y, et al.Tianwen-1 MINPA observations in the solar wind[J].Earth and Planetary Physics, 2022, 6(1):1-9.
[33] Knapmeyer-Endrun B, Panning M P, Bissig F, et al.Thickness and structure of the Martian crust from InSight seismic data[J].Science, 2021, 373(6553):438-443.
[34] Khan A, Ceylan S, Driel M, et al.Upper mantle structure of Mars from InSight seismic data[J].Science, 2021, 373(6553):434-438.
[35] Stähler S C, Amir K, Banerdt B W, et al.Seismic detection of the Martian core[J].Science, 2021, 373(6553):443-448.
[36] Cottaar S, Koelemeijer P.The interior of Mars revealed[J].Science, 2021, 373(6553):388-389.
[37] Mars from the InSight out[EB/OL].[2021-12-07].https://eos.org/articles/mars-from-the-insight-out.
[38] Hobiger M, Hallo M, Schmelzbach C, et al.The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations[J].Nature Communications, 2021, 12:6756.
[39] Bristow T F, Grotzinger J P, Rampe E B, et al.Brinedriven destruction of clay minerals in Gale crater, Mars[J].Science, 2021, 373(6551):198-204.
[40] Millan M, Teinturier S, Malespin C A, et al.Organic molecules revealed in Mars's Bagnold Dunes by Curiosity's derivatization experiment[J].Nature Astronomy, 2021, doi:10.1038/s41550-021-01507-9.551):198-204.
[41] 王琴,时蓬,范全林.21世纪火星探测科学发现与未来展望[J].现代物理知识, 2020, 32(6):3-17.
[42] Mangold N, Gupta S, Gasnault O.Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars[J].Science, 374(6568):711-717.
[43] Scheller E L, Ehlmann B L, Hu R Y, et al.Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust[J].Science, 2021, 372(6537):56-62.
[44] Yang Y Z, Li S, Zhu M H, et al.Impact remnants rich in carbonaceous chondrites detected on the Moon by the Chang' e-4 rover[J].Nature Astronomy, 2021, 5(11):1-18.
[45] Gou S, Yue Z Y, Di K C, et al.Geologically old but freshly exposed rock fragments encountered by Yutu-2 rover[J].Journal of Geophysical Research:Planets, 2021, 126(3), doi:10.1029/2020JE006565.
[46] Xie L H, Li L, Zhang A B, et al.et al.Inside a lunar mini-magnetosphere:First energetic neutral atom measurements on the lunar surface[J].Geophysical Research Letters, 2021, doi:10.1029/2021GL093943.
[47] Li C L, Hu H, Yang M F, et al.Characteristics of the lunar samples returned by Chang'e-5 mission[J].National Science Review, 2021, doi:10.1093/nsr/nwab188.
[48] Che X C, Nemchin A, Liu D Y, et al.Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5[J].Science, 2021, 374(6569):887-890.
[49] Li Q L, Zhou Q, Liu Y, et al.Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts[J].Nature, 2021, 600(7887):54-58.
[50] Tian H C, Wang H, Chen Y, et al.Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane[J].Nature, 2021, 600(7887):59-63.
[51] Hu S, He H C, Ji J L, et al.A dry lunar mantle reservoir for young mare basalts of Chang'e-5[J].Nature, 2021, 600(7887):49-53.
[52] Moriarty III P, Dygert N, Valencia S, et al.The search for lunar mantle rocks exposed on the surface of the Moon[J].Nature Communications, 2021, 12:4659.
[53] Moriarty D P, Watkins R N, Valencia S N, et al.Evidence for a stratified upper mantle preserved within the South Pole-Aitken Basin[J].Journal of Geophysical Research:Planets, 2020, 126(1), doi:10.1029/2020JE0065-89.
[54] Fukuya K, Imamura T, Taguchi M, et al.The nightside cloud-top circulation of the atmosphere of Venus[J].Nature, 2021, 595(7868):511-515.
[55] Stenborg G, Gallagher B, Howard R, et al.Pristine PSP/WISPR observations of the circumsolar dust ring near Venus's orbit[J].The Astrophysical Journal, 2021, 910(2):157.
[56] Collinson G, Ramstad R, Glocer A, et al.Depleted plasma densities in the ionosphere of Venus near solar minimum from Parker Solar Probe observations of upper hybrid resonance emission[J].Geophysical Research Letters, 2021, 48(9):e2020GL092243.
[57] Yao Z H, Dunn W R, Woodfield E E, et al.Revealing the source of Jupiter's x-ray auroral flares[J].Science Advances, 2021, 7(28):eabf0851.
[58] Bonfond B Z, Yao Z H, Gladstone G, et al.Are dawn storms Jupiter's auroral substorms?[J].AGU Advances, 2021, 2(1):1-14.
[59] Zhang B, Delamere P A, Yao Z H, et al.How Jupiter's unusual magnetospheric topology structures its aurora[J].Science Advances, 2021, 7(15):eabd1204.
[60] O' Donoghue J, Moore L, Bhakyapaibul T, et al.Global upper-atmospheric heating on Jupiter by the polar aurorae[J].Nature, 2021, 596(7870):54-57.
[61] Bolton S J, Levin S M, Guillot T, et al.Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices[J].Science, 2021, 374(6570):968-972.
[62] Parisi M, Kaspi Y, Galanti E, et al.The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights[J].Science, 2021, 374(6570):964-968.
[63] 苏晓华,时蓬,白青江,等.空间地球科学卫星发展及应用[J].卫星应用, 2021(7):21-29.
[64] Pascolini-Campbell M, Reager J T, Chandanpurkar H A, et al.A 10 per cent increase in global land evapotranspiration from 2003 to 2019[J].Nature, 2021, 593(7860):543-547.
[65] Loeb N, Johnson G, Thorsen J, et al.Satellite and ocean data reveal marked increase in Earth's heating rate[J].Geophysical Research Letters, 2021, doi:10.1029/2021GL093047.
[66] 2021-2030地球科学发展战略研究组.2021-2030地球科学发展战略:宜居地球的过去、现在与未来[M].北京:科学出版社, 2021.
[67] 白青江,范全林,时蓬,等.关于新一代旗舰型科学卫星WFIRST发展的分析[J].科技导报, 2021, 39(11):38-45.
[68] 时蓬,王琴,白青江,等.2020年深空探测热点回眸[J].科技导报, 2021, 39(1):69-87.
[69] 范全林,宋婷婷,时蓬,等.发达的空间科学是航天强国的重要标志[J].航天政策研究, 2021(4):2-7.
[70] Gu Y D.China space station:New opportunity for space science[J].National Science Review, 2021, doi:10.1093/nsr/nwab219.
Outlines

/