[1] Wang X Y, Zheng X T, Xiao S, et al.GRB 210121A:A typical fireball burst detected by two small missions[J].The Astrophysical Journal, 2021, doi:10.3847/1538-4357/ac29bd.
[2] 范全林,白青江,时蓬.关于空间科学概念的若干考证[J].科技导报, 2020, 38(17):100-114.
[3] Conroy C, Naidu R P, Garavito-Camargo N, et al.Allsky dynamical response of the Galactic halo to the Large Magellanic Cloud[J].Nature, 2021, 592(7855):534-536.
[4] Kuhn M A, Benjamin R A, Zucker C, et al.A high pitch angle structure in the Sagittarius Arm[J].Astronomy & Astrophysics, 2021, doi:10.1051/0004-6361/202141198.
[5] Montalbán J, Mackereth J T, Miglio A, et al.Chronologically dating the early assembly of the milky way[J].Nature astronomy.2021, 5:640-647.
[6] Zhao G, Chen Y Q.Low-α metal-rich stars with sausage kinematics in the LAMOST survey:Are they from the Gaia-Sausage-Enceladus galaxy?[J].Science China Physics, Mechanics & Astronomy, 2021, 64(3):13-26.
[7] 徐玉朋,陈勇,董永伟.探索极端宇宙——从HXMT到eXTP和HERD[J].现代物理知识, 2021, 33(2):12-21.
[8] Stein R, van Velzen S, Kowalski M, et al.A tidal disruption event coincident with a high-energy neutrino[J].Nature Astronomy, 2021, 5(5):510-518.
[9] Connor T, Bañados E, Stern D, et al.Enhanced X-ray emission from the most radio-powerful quasar in the universe's first billion years[J].The Astrophysical Journal Letters, 2021, 911(2):120-131.
[10] Shi F Z, Li Z Y, Yuan F, et al.An energetic hot wind from the low-luminosity active galactic nucleus M81*[J].Nature Astronomy, 2021, 5(9):928-935.
[11] Wilkins D R, Gallo L C, Costantini E, et al.Light bending and X-ray echoes from behind a supermassive black hole[J].Nature, 2021, 595(7869):657-660.
[12] Paynter J, Webster R, Thrane E.Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst[J].Nature Astronomy, 2021, 5(6):560-568.
[13] Li C K, Lin L, Xiong S L, et al.HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J].Nature Astronomy, 2021, 5(4):378-384.
[14] You B, Tuo Y L, Li C Z, et al.Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070[J].Nature Communications, 2021, 12(1):1025.
[15] Weng S S, Cai Z Y, Zhang S N, et al.Time-lag between disk and corona radiation leads to hysteresis effect observed in black hole X-ray binary MAXI J1348-630[J].The Astrophysical Journal Letters, 2021, 915(1):L15.
[16] Delrez L, Ehrenreich D, Alibert Y, et al.Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS[J].Nature Astronomy, 2021, 5(8):775-787.
[17] Hedges C, Hughes A, Zhou G, et al.TOI-2076 and TOI-1807:Two young, comoving planetary systems within 50 pc identified by TESS that are ideal candidates for further follow Up[J].The Astronomical Journal, 2021, 162(2):54.
[18] Stefano R, Berndtsson J, Urquhart R, et al.A possible planet candidate in an external galaxy detected through X-ray transit[J].Nature Astronomy, 2021, 5(12):1297-1307.
[19] Hiramatsu D, Howell D, Van Dyk S D, et al.The electron-capture origin of supernova 2018zd[J].Nature Astronomy, 2021, 5(9):903-910.
[20] Ritter A, Parker Q A, Lykou F, et al.The remnant and origin of the historical supernova 1181 AD[J].The Astrophysical Journal Letters, 2021, 918(2):L33.
[21] Alfvén H.Existence of electromagnetic-hydrodynamic waves[J].Nature, 1942, 150(2):405-406.
[22] Kasper J C, Klein K G, Lichko E, et al.Parker Solar Probe enters the magnetically dominated solar corona[J].Physical Review Letters, 2021, 127(25):255101.
[23] Chen Y J, Przybylski D, Peter H, et al.Transient smallscale brightenings in the quiet solar corona:A model for camp fi res observed with Solar Orbiter[J].Astronomy & Astrophysics, 2021, 656:L7.
[24] Vadawale S V, Mithun N P S, Mondal B, et al.Observations of the quiet sun during the deepest solar minimum of the past century with Chandrayaan-2 XSM:Sub-aclass microflares outside active regions[J].The Astrophysical Journal Letters, 2021, 912:L13.
[25] Bahauddin S M, Bradshaw S J, Winebarger A R.The origin of reconnection-mediated transient brightenings in the solar transition region[J].Nature Astronomy, 2021, 5:237-245.
[26] Zhang Q H, Zhang Y L, Wang C, et al.A space hurricane over the Earth's polar ionosphere[J].Nature communications, 2021, doi:10.1038/s41467-021-21459-y.
[27] Ocker S K, Cordes J M, Chatterjee S, et al.Persistent plasma waves in interstellar space detected by Voyager 1[J].Nature Astronomy, 2021, 5(8):761-765.
[28] Uritsky V M, Deforest C E, Karpen J T, et al.Plumelets:Dynamic filamentary structures in solar coronal plumes[J].The Astrophysical Journal, 2021, 907(1):1.
[29] Mason E I, Antiochos S K, Vourlidas A.An observational study of a "Rosetta stone" solar eruption[J].The Astrophysical Journal Letter, 2021, 914(1):L8.
[30] Gizon L, Cameron R H, Bekki Y, et al.Solar inertial modes:Observations, identification, and diagnostic promise[J].Astronomy & Astrophysics, 2021, 652:L6.
[31] Simon A A, Hueso R, Sánchez-Lavega A, et al.Midsummer atmospheric changes in Saturn's northern hemisphere from the Hubble OPAL program[J].The Planetary Science Journal, 2021, 2(2):47.
[32] Zhang A B, Kong L G, Li W Y, et al.Tianwen-1 MINPA observations in the solar wind[J].Earth and Planetary Physics, 2022, 6(1):1-9.
[33] Knapmeyer-Endrun B, Panning M P, Bissig F, et al.Thickness and structure of the Martian crust from InSight seismic data[J].Science, 2021, 373(6553):438-443.
[34] Khan A, Ceylan S, Driel M, et al.Upper mantle structure of Mars from InSight seismic data[J].Science, 2021, 373(6553):434-438.
[35] Stähler S C, Amir K, Banerdt B W, et al.Seismic detection of the Martian core[J].Science, 2021, 373(6553):443-448.
[36] Cottaar S, Koelemeijer P.The interior of Mars revealed[J].Science, 2021, 373(6553):388-389.
[37] Mars from the InSight out[EB/OL].[2021-12-07].https://eos.org/articles/mars-from-the-insight-out.
[38] Hobiger M, Hallo M, Schmelzbach C, et al.The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations[J].Nature Communications, 2021, 12:6756.
[39] Bristow T F, Grotzinger J P, Rampe E B, et al.Brinedriven destruction of clay minerals in Gale crater, Mars[J].Science, 2021, 373(6551):198-204.
[40] Millan M, Teinturier S, Malespin C A, et al.Organic molecules revealed in Mars's Bagnold Dunes by Curiosity's derivatization experiment[J].Nature Astronomy, 2021, doi:10.1038/s41550-021-01507-9.551):198-204.
[41] 王琴,时蓬,范全林.21世纪火星探测科学发现与未来展望[J].现代物理知识, 2020, 32(6):3-17.
[42] Mangold N, Gupta S, Gasnault O.Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars[J].Science, 374(6568):711-717.
[43] Scheller E L, Ehlmann B L, Hu R Y, et al.Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust[J].Science, 2021, 372(6537):56-62.
[44] Yang Y Z, Li S, Zhu M H, et al.Impact remnants rich in carbonaceous chondrites detected on the Moon by the Chang' e-4 rover[J].Nature Astronomy, 2021, 5(11):1-18.
[45] Gou S, Yue Z Y, Di K C, et al.Geologically old but freshly exposed rock fragments encountered by Yutu-2 rover[J].Journal of Geophysical Research:Planets, 2021, 126(3), doi:10.1029/2020JE006565.
[46] Xie L H, Li L, Zhang A B, et al.et al.Inside a lunar mini-magnetosphere:First energetic neutral atom measurements on the lunar surface[J].Geophysical Research Letters, 2021, doi:10.1029/2021GL093943.
[47] Li C L, Hu H, Yang M F, et al.Characteristics of the lunar samples returned by Chang'e-5 mission[J].National Science Review, 2021, doi:10.1093/nsr/nwab188.
[48] Che X C, Nemchin A, Liu D Y, et al.Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5[J].Science, 2021, 374(6569):887-890.
[49] Li Q L, Zhou Q, Liu Y, et al.Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts[J].Nature, 2021, 600(7887):54-58.
[50] Tian H C, Wang H, Chen Y, et al.Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane[J].Nature, 2021, 600(7887):59-63.
[51] Hu S, He H C, Ji J L, et al.A dry lunar mantle reservoir for young mare basalts of Chang'e-5[J].Nature, 2021, 600(7887):49-53.
[52] Moriarty III P, Dygert N, Valencia S, et al.The search for lunar mantle rocks exposed on the surface of the Moon[J].Nature Communications, 2021, 12:4659.
[53] Moriarty D P, Watkins R N, Valencia S N, et al.Evidence for a stratified upper mantle preserved within the South Pole-Aitken Basin[J].Journal of Geophysical Research:Planets, 2020, 126(1), doi:10.1029/2020JE0065-89.
[54] Fukuya K, Imamura T, Taguchi M, et al.The nightside cloud-top circulation of the atmosphere of Venus[J].Nature, 2021, 595(7868):511-515.
[55] Stenborg G, Gallagher B, Howard R, et al.Pristine PSP/WISPR observations of the circumsolar dust ring near Venus's orbit[J].The Astrophysical Journal, 2021, 910(2):157.
[56] Collinson G, Ramstad R, Glocer A, et al.Depleted plasma densities in the ionosphere of Venus near solar minimum from Parker Solar Probe observations of upper hybrid resonance emission[J].Geophysical Research Letters, 2021, 48(9):e2020GL092243.
[57] Yao Z H, Dunn W R, Woodfield E E, et al.Revealing the source of Jupiter's x-ray auroral flares[J].Science Advances, 2021, 7(28):eabf0851.
[58] Bonfond B Z, Yao Z H, Gladstone G, et al.Are dawn storms Jupiter's auroral substorms?[J].AGU Advances, 2021, 2(1):1-14.
[59] Zhang B, Delamere P A, Yao Z H, et al.How Jupiter's unusual magnetospheric topology structures its aurora[J].Science Advances, 2021, 7(15):eabd1204.
[60] O' Donoghue J, Moore L, Bhakyapaibul T, et al.Global upper-atmospheric heating on Jupiter by the polar aurorae[J].Nature, 2021, 596(7870):54-57.
[61] Bolton S J, Levin S M, Guillot T, et al.Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices[J].Science, 2021, 374(6570):968-972.
[62] Parisi M, Kaspi Y, Galanti E, et al.The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights[J].Science, 2021, 374(6570):964-968.
[63] 苏晓华,时蓬,白青江,等.空间地球科学卫星发展及应用[J].卫星应用, 2021(7):21-29.
[64] Pascolini-Campbell M, Reager J T, Chandanpurkar H A, et al.A 10 per cent increase in global land evapotranspiration from 2003 to 2019[J].Nature, 2021, 593(7860):543-547.
[65] Loeb N, Johnson G, Thorsen J, et al.Satellite and ocean data reveal marked increase in Earth's heating rate[J].Geophysical Research Letters, 2021, doi:10.1029/2021GL093047.
[66] 2021-2030地球科学发展战略研究组.2021-2030地球科学发展战略:宜居地球的过去、现在与未来[M].北京:科学出版社, 2021.
[67] 白青江,范全林,时蓬,等.关于新一代旗舰型科学卫星WFIRST发展的分析[J].科技导报, 2021, 39(11):38-45.
[68] 时蓬,王琴,白青江,等.2020年深空探测热点回眸[J].科技导报, 2021, 39(1):69-87.
[69] 范全林,宋婷婷,时蓬,等.发达的空间科学是航天强国的重要标志[J].航天政策研究, 2021(4):2-7.
[70] Gu Y D.China space station:New opportunity for space science[J].National Science Review, 2021, doi:10.1093/nsr/nwab219.