Review

Overview of the research progress of frequency diverse array radar

  • WANG Bo ,
  • CHEN Chushu ,
  • GUO Yajun ,
  • LIU Naibo ,
  • XU Zehua
Expand
  • 1. No. 95972 of Chinese People's Liberation Army, Jiuquan 735300, China;
    2. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China

Received date: 2020-12-01

  Revised date: 2021-04-06

  Online published: 2021-06-08

Abstract

Different from the phased array in which the beam direction is controlled by phase difference between array elements, the frequency diversity array (FDA) radar can realize beam control with higher degree of freedom by introducing frequency difference between array elements. This paper summarizes the research progress of FDA radar at home and abroad, and analyzes its current research status from aspects of array structure and orientation graphic coupling technology, electronic countermeasure technology application, electronic countermeasure technology application and so on. On this basis, some key technical problems to be solved, such as uncoupled FDA time-varying beam control, FDA-based electronic warfare technology and FDA-based radar practical research, are analyzed. For actual combat application of FDA, it is needed to develop a feasible time-invariant FDA distance-angle decoupling method of the beam and carry out integrated application research concerning FDA based structural analysis, launch waveform and frequency control function design, so as to speed up the process of FDA radar from conceptual stage to combat application.

Cite this article

WANG Bo , CHEN Chushu , GUO Yajun , LIU Naibo , XU Zehua . Overview of the research progress of frequency diverse array radar[J]. Science & Technology Review, 2021 , 39(9) : 66 -77 . DOI: 10.3981/j.issn.1000-7857.2021.09.008

References

[1] Antonio P, Wicks M C, Griffiths H D, et al. Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference. Piscataway:NJ, 2006:470-475.
[2] Mustafa S, Demir S, Hizal A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]//Proceedings of 2007 IEEE Conference on Radar. Piscataway NJ:IEEE, 2007:427-430.
[3] Bauman B, Christianson A, Wegener A, et al. Dynamic visualization of antenna patterns and phased-array beam steering[J]. IEEE Antennas and Propagation Magazine, 2012, 54(3):184-193.
[4] Antonio P, Wicks M C, Griffiths H D, et al. Multi-mission multi-mode waveform diversity[C]//Proceedings of the IEEE Conference on Radar. Piscataway NJ:IEEE, 2006:580-582.
[5] Wang W Q. Frequency diverse array antenna:New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2):145-152.
[6] Wicks M C, Antonio P. Frequency diverse array withindependent modulation of frequency, amplitude, andphase:7319427[P]. 2008-01-15.
[7] Wicks M C, Antonio P. Method and apparatus for afrequency diverse array:7511665[P]. 2009-03-31.
[8] Antonio P. An investigation of a frequency diverse array[D]. London:University College London, 2009.
[9] Sammartino P F, Baker C J, Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace Electronic Systems, 2013, 49(1):201-222.
[10] Jones A M, Rigling B D. Frequency diverse array radar receiver architectures[C]//Proceedings of 2012 International Waveform Diversity & Design Conference. Piscataway NJ:IEEE, 2012:211-217.
[11] Khan W, Qureshi I M, Saeed S. Frequency diverse array radar with logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:499-502.
[12] Gao K D, Wang W Q, Cai J, et al. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves, Antennas & Propagation, 2016, 10(8):880-884.
[13] Wang Z, Mu T, Song Y, et al. Beamforming of frequency diverse array radar with nonlinear frequency offset based on logistic map[J]. Progress in Electromagnetics Research, 2018, 64:55-63.
[14] Basit A, Qureshi I, Khan W, et al. Beam pattern synthesis for an FDA radar with hamming window based nonuniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:2283-2286.
[15] Liao Y, Tang H, Chen X, et al. Frequency diverse array beampattern synthesis with Taylor windowed frequency offsets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11):1901-1905.
[16] Shao H Z, Li J C, Chen H, et al. Adaptive frequency offset selection in frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(5):1405-1408.
[17] 项喆, 陈伯孝, 杨明磊. 频率分集雷达最优频率间隔选择方法[J]. 西安电子科技大学学报, 2017, 44(4):12-17.
[18] Xiong J, Wang W Q, Shao H, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2017(16):469-472.
[19] Wang Z, Wang W Q, Shao H. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1):124.
[20] Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8):4073-4081.
[21] Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(4):3057-1076.
[22] Xu Y, Shi X, Xu J, et al. Range-angle-decoupled beampattern synthesis with subarray-based frequency diverse array[J]. Digital Signal Processing, 2017, 64:49-59.
[23] Sammartino P F, Baker C. The frequency diverse bistatic system[C]//Processing of 2009 International Waveform Diversity and Design Conference. Piscataway NJ:IEEE, 2009:155-159.
[24] Wang W Q, Shao H. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1):106-114.
[25] Wang W Q, So H C, Shao H. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8):2469-2476.
[26] Xu J W, Liao G S, Zhu S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13):3396-3410.
[27] Turhaner A, Demir S, Hizal A. Monopulse direction finding for linear frequency modulation based frequency diverse array[C]//Processing of 2017 IEEE Radar Conference. Piscataway NJ:IEEE, 2017:89-94.
[28] Qin S, Zhang Y D, Amin M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2):321-335.
[29] Wang S L, Xu Z, Liu X, et al. Subarray-based frequency diverse array for target range-angle localization with monopulse processing[J]. IEEE Sensors Journal, 2018, 18(14):5937-5947.
[30] Khan W, Qureshi I M, Basit A, et al, Performance analysis of MIMO-frequency diverse array radar with variable logarithmic offsets[J]. Progress in Electromagnetics Research, 2016, 62:23-34.
[31] Wang B, Xie J, Zhang J, et al. Dot-shaped beamforming analysis of subarray-based sin-FDA[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(10):1429-1444.
[32] Abdalla A, Abdalla H, Ramadan M, et al. Overview of frequency diverse array in radar ECCM applications[C]//International Conference on Communication, Control, Computing, and Electronic Engineering. Piscataway NJ:IEEE, 2017:1-9.
[33] Krim H, Viberg M. Two decades of array signal processing research:The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 7(13):67-94.
[34] So H C. Source localization:Algorithms and analysis[M]//Handbook of Position Location:Theory, Practice and Advances. Piscataway NJ:Wiley-IEEE Press, 2011:25-66.
[35] Li D P, Song D, Xu R Q. A mainlobe interference suppression system based on mismatched filtering[C]//20102nd International Conference on Computer Engineering and Technology. Piscataway NJ:IEEE, 2010:233-238.
[36] Lan L, Liao G S, Xu J W. A method to suppress the main-beam deceptive jamming in FDA-MIMO radar with random polyphase codes[C]//2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM). Piscataway NJ:IEEE, 2018:509-513.
[37] Xu J W, Liao G S, Zhu S Q, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Elsevier Journal of Signal Processing, 2015, 113(8):9-17.
[38] Liu Y, Ruan H, Wang L, et al. The random frequency diverse array:A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2):295-308.
[39] Li S, Zhang L, Liu N, et al. Adaptive detection with conic rejection to suppress deceptive jamming for frequency diverse MIMO radar[J]. Digital Signal Processing, 2017, 69:32-40.
[40] Xu J W, Zhu S Q, Liao G S. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3):1602-1610.
[41] Wang B, Xie J W, Zhang J, et al. Beamforming analysis based on CSB sin-FDA[J]. Journal of Systems Engineering and Electronics, 2020, 31(1):73-84.
[42] Li Z H, Zhang Y S, Ge Q C, et al. A robust deceptive jamming suppression method based on covariance matrix reconstruction with frequency diverse array MIMO radar[C]//Processing of 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway NJ:IEEE, 2018:1-5.
[43] Xu J W, Zhu S Q, Liao G S. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8):1620-1631.
[44] Wu X, Liu Z, Xie R. Clutter suppression for hypersonic vehicle-borne radar with frequency diverse array[J]. Journal of Systems Engineering and Electronics, 2017, 28(3):481-492.
[45] Farina A. Electronic counter-countermeasures[M]//Skolnik M. Radar Handbook. 3rd ed. New York:Mc GrawHill, 2008:221-278.
[46] Li N, Zhang Y. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3):1110-1120.
[47] Wang W Q, Cai J. A technique for jamming bi- and multistatic SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):80-82.
[48] 胡祺勇, 谢军伟, 张昭建. 频率分集阵列在角度欺骗中的应用分析[J]. 空军工程大学学报(自然科学版), 2016, 10(6):41-47.
[49] 葛佳昂, 谢军伟, 张浩为, 等. 频率分集阵列对干涉仪的角度欺骗效果[J]. 北京航空航天大学学报, 2019, 45(1):183-191.
[50] 王博, 谢军伟, 葛佳昂, 等. FDA发射干扰机对无源雷达干涉仪测向系统的欺骗机理[J]. 华南理工大学学报(自然科学版), 2020, 48(1):93-103.
[51] 王博, 谢军伟, 葛佳昂, 等. FDA对比幅法单脉冲测向的角度欺骗[J]. 北京航空航天大学学报, 2020, 46(3):643-650.
[52] Ge J A, Xie J W, Wang B. A cognitive active anti-jamming method based on frequency diverse array radar phase center[J]. Digital Signal Processing, 2021, 109:102915.
[53] Zhu Y, Wang H, Zhang S S, et al. Deceptive jamming on space-borne SAR using frequency diverse array[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway NJ:IEEE, 2018:605-608.
[54] 明靖鸥. 基于频控阵的雷达干扰技术研究[D]. 成都:电子科技大学, 2018.
[55] 汪辉. 基于频控阵的雷达干扰技术研究与实现[D]. 成都:电子科技大学, 2019.
[56] Huang B, Wang W Q, Zhang S S, et al. A novel approach for spaceborne SAR scattered-wave deception jamming using frequency diverse array[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(9):1568-1572.
[57] Wang H, Zhang S S, Wang W Q, et al. Multi-scene deception jamming on SAR imaging with FDA antenna[J]. IEEE Access, 2020, 4(8):7058-7069.
[58] Huang B, Nusenu S Y, Zhang S S, et al. A deceptive jamming against high and low orbit bistatic SAR using frequency diversity array[C]//2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway NJ:IEEE, 2019:1-5.
[59] Zong Z L, Huang L B, Wang H, et al. Micro-motion deception jamming on sar using frequency diverse array[C]//2019 IEEE International Geoscience and Remote Sensing Sym-posium. Piscataway NJ:IEEE, 2019, 2391-2394.
[60] Khan W, Qureshi I M, Basit A, et al. A double pulse MIMO frequency diverse array radar for improved rangeangle localization of target[J]. Wireless Personal Communications, 2015, 82:2199-2213.
[61] Sen S. PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3658- 3669.
[62] Sammartino P F, Backer C J, Griffiths H D. Range-angle dependent waveform[C]//2010 IEEE Radar Conference. Piscataway NJ:IEEE, 2010:511-515.
[63] Wang W Q. Phased-MIMO radar with frequency diversity for range dependent beamforming[J]. IEEE Sensors Journal, 2013, 13(4):1320-1328.
[64] Xu J, Zhu S, Liao G. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3):1602-1610.
[65] Yao A, Anselmi A, Rocca P. A novel planar frequency diverse array design approach for far-field wireless power transmission[C]//Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway NJ:IEEE, 2017:9-14.
[66] Saeed S, Qureshi I M, Khan W, et al. An investigation into uniform circular frequency diverse array (UCFDA) radars[J]. Remote Sensing Letters, 2015, 6(9):707-714.
[67] Cetintepe C, Demir S. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7):3567-3574.
[68] Baizert P, Hale T B, Temple M A, et al. Forward looking radar GMTI benefits using a linear frequency diverse array[J]. Electronics Letters, 2006, 42(22):1311-1312.
[69] Farooq J, Temple M A, Saville M A. Application of frequency diverse arrays to synthetic aperture radar imaging[C]//Processing of 2007 International Conference on Electromagnetics in Advanced Applications. Piscataway NJ:IEEE, 2007:447-449.
[70] Wang W Q. Space-time coding MIMO-OFDMSAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8):3094-3104.
[71] Hu J, Yan S, Shu F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays[J]. IEEE Access, 2017, 5:1658-1667.
[72] Liu Y. Range azimuth indication using a random frequency diverse array[C]//Processing 2016 IEEE International Conference on Acoustics, Speech Signal Process. Piscataway NJ:IEEE, 2016:3111-3115.
[73] Wang W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar & Navigation, 2016, 10(2):359-369.
[74] Saeed S, Qureshi I M, Basit A, et al. Cognitive null steering in frequency diverse array radars[J]. International Journal of Microwave and Wireless Technologies, 2017, 9(1):25-33.
[75] Huang H, Wang W Q. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6):34-42.
[76] Xu Y H, Shi X W, Xu J W, et al. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7):3262-3267.
[77] Gao K, Wang W Q, Chen H, et al. Transmit beam space design for multi-carrier frequency diverse array sensor[J]. IEEE Sensors Journal, 2016, 16(14):5709-5714.
[78] Khan W, Qureshi I M. Frequency diverse array radar with time dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014(13):758-761.
[79] Wang Y X, Li W, Huang G C, et al. Time-invariant range-angle dependent beampattern synthesis for FDA radar targets tracking[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:2375-2379.
[80] Yao A M, Rocca P, Wu W, et al. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2):282-294.
[81] Yao A M, Wu W, Fang D G. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10):4434-4446.
[82] Yao A M, Wu W, Fang D G. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2):552-566.
[83] Fang D G, Yao A G, Wu W. Synthesis of 4-D beampatterns using 4-D arrays[C]//2016 IEEE International Symposium on Antennas and Propagation. Piscataway NJ:IEEE, 2016:703-704.
[84] Shi J, Liu X, Yang Y H, et al. Comments on Deceptive jamming suppression with frequency diverse MIMO radar"[J]. Signal Processing, 2019, 158:1-3
[85] Fartookzadeh M. Comments on "Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern"[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2):1211-1212.
[86] Wu W, Fang D G. Reply to comments on "Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern"[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2):1213-1213.
[87] Chen B X, Chen X L, Huang Y. et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1):98-101.
[88] 王博, 谢军伟, 张晶等. 脉冲压缩雷达信号的FDA特性研究[J]. 电子科技大学学报, 2020, 49(1):56-63.
[89] Wang W Q, Dai M, Zheng Z. FDA radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3):1368-1380.
[90] Mai C Y, Lu S T, Sun J P, et al. Beampattern optimization for frequency diverse array with sparse frequency waveforms[J]. IEEE Access, 2017, 5:17914-17926.
[91] Han S D, Fan C Y, Huang X T. A novel receiver architecture for frequency diverse array radar[C]//2016 Progress in Electromagnetic Research Symposium. Piscataway NJ:IEEE, 2016:2270-2274.
[92] Gui R, Wang W Q, Cui W Q, et al. Coherent pulsedFDA radar receiver design with time-variance consideration:SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1):200-214.
[93] Xu J W, Lan L, Liao G S, et al. Range-angle matched receiver for coherent FDA radars[C]//2017 IEEE Radar Conference. Piscataway NJ:IEEE, 2017:0324-0328.
[94] Gui R, Wang W Q, Shao H. General receiver design for FDA radar[C]//2018 IEEE Radar Conference. Piscataway NJ:IEEE, 2018:23-27.
[95] Vakalis S, Klinefelter E, Nanzer J A. Angle estimation using wideband frequency modulation and an active distributed array[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(11):1059-1061.
[96] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2):153-166.
Outlines

/