Exclusive: Ecological protection of the Yellow River Basin

Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau

  • HE Jin-Sheng ,
  • LIU Zhipeng ,
  • YAO Tuo ,
  • SUN Shucun ,
  • Lü Zhi ,
  • HU Xiaowen ,
  • CAO Guangmin ,
  • WU Xinwei ,
  • LI Li ,
  • BU Haiyan ,
  • ZHU Jianxiao
Expand
  • 1. State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
    2. Department of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China;
    3. College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
    4. School of Life Sciences, Nanjing University, Nanjing 210093, China;
    5. Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China;
    6. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
    7. State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China

Received date: 2020-05-10

  Revised date: 2020-07-17

  Online published: 2020-09-15

Abstract

Various types of restoration approaches are currently adopted to restore the degraded grasslands of the QinghaiTibetan Plateau, including fencing off grasslands, establishing artificial grasslands, adding nutrients and no-tillage sowing. Although they have played an important role in the process of alpine grassland restoration, a systematic analysis of the key factors and techniques (i.e., physical, chemical and biological factors related to plant and soil) that constrain the restoration of degraded alpine grasslands is still lacking. Here, we review the key factors constraining restoration of degraded alpine grasslands, including seed provenance, soil microorganisms, soil nutrients and local culture. Furthermore, we propose a heuristic framework to combine a suit of approaches to deal with these key factors in the alpine grassland restoration practices. Specifically, the heuristic framework will 1) develop techniques for seed collection and multiplication of native grasses, seed coating, optimal combination of a range of native species, and no-tillage sowing; 2) screen compound microbial species suitable for degraded grassland restoration and develop microbial agents to reduce the constraints of soil microorganism; 3) develop vegetation restoration techniques tailored to soil nutrient regulation in order to deal with the constraint on soil; 4) develop adaptive management based on application of new techniques tailored to Tibetan herders. Therefore, we propose "close-to-ature" recovery restoration, a novel restoration measure that rests on of native grass species, soil microorganisms and regulation of nutrient, as a potential approach to effectively and efficiently restore the degraded grasslands on Tibetan Plateau.

Cite this article

HE Jin-Sheng , LIU Zhipeng , YAO Tuo , SUN Shucun , Lü Zhi , HU Xiaowen , CAO Guangmin , WU Xinwei , LI Li , BU Haiyan , ZHU Jianxiao . Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau[J]. Science & Technology Review, 2020 , 38(17) : 66 -80 . DOI: 10.3981/j.issn.1000-7857.2020.17.007

References

[1] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1):1-8.
[2] 秦大河, 赵新全, 丁永建, 等. 三江源区生态保护与可持续发展[M]. 北京:科学出版社, 2014.
[3] 徐祥德, 董李丽, 赵阳, 等. 青藏高原"亚洲水塔" 效应和大气水分循环特征[J]. 科学通报, 2019, 64(27):2830-2841.
[4] 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27):2783-2795.
[5] 杨扬, 陈建国, 宋波, 等. 青藏高原冰缘植物多样性与适应机制研究进展[J]. 科学通报, 2019, 64(27):2856-2864.
[6] 苏大学. 1:1000000中国草地资源图的编制与研究[J]. 自然资源学报, 1996, 11(1):75-83.
[7] Chen B, Zhang X, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and For-est Meteorology, 2014, 189:11-18.
[8] 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27):2842-2855.
[9] 张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64(27):2865-2875.
[10] Feng Y, Zhu J, Zhao X, et al. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015[J]. Environmental Research Letters, 2019, 14(12):124009.
[11] 戴睿, 刘志红, 娄梦筠, 等. 藏北那曲地区草地退化时空特征分析[J]. 草地学报, 2013, 21(1):37-41.
[12] 李波, 邵怀勇. 气候变化与人类活动对川西高原草地变化相对作用的定量评估[J]. 草学, 2017(3):16-21.
[13] 曹广民, 林丽, 张法伟, 等. 青藏高原高寒矮嵩草草甸稳定性的维持、丧失与恢复[J]. 草业科学, 2010, 27(8):34-38.
[14] 尚占环, 董全民, 施建军, 等. 青藏高原"黑土滩" 退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报, 2018, 26(1):1-21.
[15] 骆成凤, 许长军, 游浩妍, 等. 2000-2010年青海湖流域草地退化状况时空分析[J]. 生态学报, 2013, 33(14):4450-4459.
[16] 尚占环, 姬秋梅, 多吉顿珠, 等. 西藏"一江两河" 农区草业发展探讨[J]. 草业科学, 2009, 26(8):141-146.
[17] 马玉寿, 周华坤, 邵新庆, 等. 三江源区退化高寒生态系统恢复技术与示范[J]. 生态学报, 2016, 36(22):7078-7082.
[18] 张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复:退化现状, 恢复措施, 效应与展望[J]. 生态学报, 2019, 39(20):7441-7451.
[19] Han J G, Zhang Y J, Wang C J, et al. Rangeland degra-dation and restoration management in China[J]. The Rangeland Journal, 2008, 30(2):233-239.
[20] Yan Y, Lu X. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?[J]. PeerJ, 2015, 3:e1020.
[21] Zhang C, Liu G, Song Z, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochem-istry, 2018, 124:47-58.
[22] Wu X, Wang Y, Sun S. Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan Plateau[J]. Plant and Soil, 2019, 1-10.
[23] Cao J, Li G, Adamowski J F, et al. Suitable exclosure duration for the restoration of degraded alpine grass-lands on the Qinghai-Tibetan Plateau[J]. Land Use Policy, 2019, 86:261-267.
[24] Zhu J, Zhang Y, Liu Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow[J]. Scientific Reports, 2016, 6(1):1-9.
[25] Wang C T, Wang G X, Liu W, et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow[J]. Israel Journal of Ecology and Evolution, 2013, 59(3):141-153.
[26] Xu L, Yao B, Wang W, et al. Effects of plant species richness on 13C assimilate partitioning in artificial grass-lands of different established ages[J]. Scientific Reports, 2017, 7(1):1-11.
[27] Vander Mijnsbrugge K, Bischoff A, Smith B. A question of origin:where and how to collect seed for ecological restoration[J]. Basic and Applied Ecology, 2010, 11(4):300-311.
[28] Feng R, Long R, Shang Z, et al. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China[J]. Plant and Soil, 2010, 327(1-2):403-411.
[29] Li L, Fassnacht F E, Storch I, et al. Land-use regime shift triggered the recent degradation of alpine pastures in Nyanpo Yutse of the eastern Qinghai-Tibetan Plateau[J]. Landscape Ecology, 2017, 32(11):2187-2203.
[30] Song M H, Yu F H. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau[J]. New Phytologist, 2015, 207(1):70-77.
[31] Kang J, Zhao M, Tan Y, et al. Sand-fixing characteristics of Carex brunnescens and its application with straw checkerboard technique in restoration of degraded alpine meadows[J]. Journal of Arid Land, 2017, 9(5):651-665.
[32] Harris R B, Wenying W, Badinqiuying A T S, et al. Herbivory and competition of Tibetan steppe vegetation in winter pasture:effects of livestock exclosure and plateau pika reduction[J]. PLoS One, 2015, doi:10.1371/journal. pone.0132897.
[33] Li Y, Dong S, Wen L, et al. Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2012, 49:77-83.
[34] Li Y Y, Dong S K, Wen L, et al. Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai-Tibetan Plateau[J]. Geoderma, 2014, 213:178-184.
[35] Che R, Wang F, Wang W, et al. Increase in ammoniaoxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss[J]. Biogeochemistry, 2017, 136(3):341-352.
[36] 李希来. 青藏高原"黑土滩" 形成的自然因素与生物学机制[J]. 草业科学, 2002, 19(1):20-22.
[37] 马玉寿, 尚占环, 施建军, 等. 黄河源区"黑土型"退化草地人工群落组分配置技术研究[J]. 西北农业学报, 2007, 16(5):1-6.
[38] Shang Z H, Ma Y S, Long R J, et al. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the yangtze and the yellow rivers of the QinghaiTibetan Plateau[J]. Land Degradation and Development, 2008, 19(5):554-563.
[39] Tilman D, Downing J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461):363-365.
[40] Bai Y, Han X, Wu J, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005):181-184.
[41] Hautier Y, Tilman D, Isbell F, et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity[J]. Science, 2015, 348(6232):336-340.
[42] 徐炜, 马志远, 井新, 等. 生物多样性与生态系统多功能性:进展与展望[J]. 生物多样性, 2016, 24(1):55-71.
[43] Shinneman D J, Baker W L, Lyon P. Ecological restoration needs derived from reference conditions for a semiarid landscape in Western Colorado, USA[J]. Journal of Arid Environments, 2008, 72(3):207-227.
[44] Vander Mijnsbrugge K, Bischoff A, Smith B. A question of origin:where and how to collect seed for ecological restoration[J]. Basic and Applied Ecology, 2010, 11(4):300-311.
[45] Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function:are there any links?[J]. Ecology, 2003, 84(8):2042-2050.
[46] Ma T, Zhu S, Wang Z, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils[J]. Nature Communications, 2018, 9(1):1-9.
[47] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7):1676-1689.
[48] Wardle D A, Bardgett R D, Klironomos J N, et al. Eco-logical linkages between aboveground and belowground biota[J]. Science, 2014, 304(5677):1629-1633.
[49] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451(7176):289-292.
[50] Wardle D A, Bardgett R D, Klironomos J N, et al. Eco-logical linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633.
[51] Bardgett R D, Putten W H V D. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
[52] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceeding of the National Academy of Sciences, 2014, 111(14):5266-5270.
[53] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):1-10.
[54] 赵文, 尹亚丽, 李世雄, 等. 植被重建对黑土滩草地植被及微生物群落特征的影响[J]. 生态环境学报, 2020, 29(1):71-80.
[55] Ma X, Zhang Q, Zheng M, et al. Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing[J]. The ISME Journal, 2019, 13(5):1370-1373.
[56] 薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子[J]. 科学通报, 2019, 64(27):2915-2927.
[57] 李海云, 姚拓, 张建贵, 等. 不同扰动高寒草地土壤微生物数量时空变化特征[J]. 水土保持学报, 2018, 32(4):177-183.
[58] Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems and Environment, 2016, 222:213-222.
[59] Singh A K, Bordoloi L J, Kumar M, et al. Land use impact on soil quality in eastern Himalayan region of India[J]. Environmental Monitoring and Assessment, 2014, 186(4):2013-2024.
[60] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1):807-838.
[61] Barea J M, Pozo M J, Azcon R, et al. Microbial cooperation in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56:1761-1778.
[62] Tkacz A, Cheema J, Chandra G, et al. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition[J]. The ISME Journal, 2015, 9(11):2349-2359.
[63] Pii Y, Borruso L, Brusetti L, et al. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome[J]. Plant Physiology and Biochemistry, 2016, 99:39-48.
[64] Wubs E R J, Van der Putten W H, Bosch M, et al. Soil inoculation steers restoration of terrestrial ecosystems[J]. Nature Plants, 2016, 2(8):1-5.
[65] Rehman B, Hassan T U, Bano A. Potential of indole-3-acetic acid-producing rhizobacteria to resist Pb toxicity in polluted soil[J]. Soil and Sediment Contamination:An International Journal, 2019, 28(1):101-121.
[66] Forghani A H, Almodares A, Ehsanpour A A. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor[L.] Moench cv. Sofra)[J]. Applied Biological Chemistry, 2018, 61(1):113-124.
[67] Masciarelli O, Llanes A, Luna V. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation[J]. Microbiological Research, 2014, 169(7-8):609-615.
[68] Oberson A, Frossard E, Buehlmann C, et al. Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems[J]. Plant and Soil, 2013, 371(1-2):237-255.
[69] 燕永亮, 李力, 李俊. 根际固氮微生物功能基因组及微生物肥料研究进展[J]. 中国农业科技导报, 2011, 13(5):93-101.
[70] You Q G, Xue X, Peng F, et al. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China[J]. Eco-logical Engineering, 2014, 71:133-143
[71] 曹建军, 王雪艳, 李梦天, 等. 青藏高原草地管理方式对土壤养分及其空间分布的影响[J]. 应用生态学报, 2018, 29(6):1839-1845.
[72] Shang Z, Long R. Formation causes and recovery of the "Black Soil Type" degraded alpine grassland in Qinghai-Tibetan Plateau[J]. Frontiers of Agriculture in China, 2007, 1(2):197-202.
[73] 李明森. 藏北高原草地资源合理利用[J]. 自然资源学报, 2000, 15(4):335-339.
[74] Li X R, Jia X H, Dong G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China[J]. Journal of Arid Environments, 2006, 64(3):505-522.
[75] Dong S K, Wen L, Li Y Y, et al. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau[J]. Soil Science Society of America Journal, 2012, 76(6):2256-2264.
[76] Dong S, Li J, Li X, et al. Application of design theory for restoring the "black beach" degraded rangeland at the headwater areas of the Qinghai-Tibetan Plateau[J]. African Journal of Agricultural Research, 2012, 5(5):3542-3552.
[77] 高旭升, 田种存, 郝学宁, 等. 三江源区高寒草原草地不同退化程度土壤养分变化[J]. 青海大学学报(自然科学版), 2006, 24(5):37-40.
[78] 孙建, 张振超, 董世魁. 青藏高原高寒草地生态系统的适应性管理[J]. 草业科学, 2019, 36(4):933-938.
[79] 马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究[J]. 草业科学, 2002, 19(9):1-5.
[80] 施建军, 邱正强, 马玉寿."黑土型" 退化草地上建植人工草地的经济效益分析[J]. 草原与草坪, 2007, 1:60-64.
[81] Folke C, Hahn T, Olsson P, et al. Adaptive governance of social-ecological systems[J]. Annual Review of Environment and Resources, 2005, 30(1):441-473.
[82] Garmestani A S, Allen C R. Adaptive management of social-ecological systems:The path forward[M]. Dordrecht:Springer, 2015:255-262.
[83] Walters C. Adaptive management of renewable resources[M]. London:Collier Macmillan Publishers, 1986.
[84] Allen C R, Angeler D G, Fontaine J J, et al. Adaptive management of rangeland systems[M]. Dordrecht:Springer International Publishing, 2017:373-394.
[85] Wolf J, Allice I, Bell T. Values, climate change, and implications for adaptation:Evidence from two communities in Labrador, Canada[J]. Global Environmental Change, 2013, 23(2):548-562.
[86] O'Brien K L, Wolf J. A values-based approach to vulnerability and adaptation to climate change[J]. Wiley Interdisciplinary Reviews:Climate Chang, 2010, 1(2):232-242.
[87] Bürgi M, Straub A, Gimmi U, et al. The recent land-scape history of Limpach valley, Switzerland:considering three empirical hypotheses on driving forces of land-scape change[J]. Landscape Ecology, 2010, 25(5):287-297.
[88] De Vitis M, Abbandonato H, Dixon K W, et al. The European native seed industry:Characterization and perspectives in grassland restoration[J]. Sustainability, 2017, 9(10):1682.
[89] Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress[J]. Annals of Microbiology, 2015, 65(3):1627-1637.
[90] Sarkar J, Chakraborty B, Chakraborty U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury[J]. Journal of Plant Growth Regulation, 2018, 37(4):1396-1412.
[91] Hwang E J, Lee Y S, Choi Y L. Cloning, purification, and characterization of the organic solvent tolerant β-glucosidase, OaBGL84, from Olleya aquimaris DAU311[J]. Applied Biological Chemistry, 2018, 61(3):325-336.
[92] Tiepo A N, Hertel M F, Rocha S S, et al. Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria[J]. Plant Physiology and Biochemistry, 2018, 130:277-288.
[93] Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review[J]. Microbiological Research, 2018, 209:21-32.
[94] 陈冬明, 张楠楠, 刘琳, 等. 不同恢复措施对若尔盖沙化草地的恢复效果比较[J]. 应用与环境生物学报, 2016, 22(4):573-578.
[95] 王长庭, 龙瑞军, 王启兰, 等. 三江源区不同建植年代人工草地群落演替与土壤养分变化[J]. 应用与环境生物学报, 2009, 15(6):737-744.
[96] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.
[97] Güsewell S, Verhoeven J T A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter[J]. Plant and Soil, 2006, 287(1/2):131-143.
[98] Sardans J, Rivas-Ubach A, Penuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function:A review and perspectives[J]. Biogeochemistry, 2012, 111(1-3):1-39.
[99] Savory A. Holistic management:a new framework for decision making 2nd edition[J]. American Journal of Alter-native Agriculture, 1999, 14(2):93-94.
[100] Sherren K, Kent C. Who's afraid of Allan Savory? Scientometric polarization on Holistic Management as competing understandings[J]. Renewable Agriculture and Food Systems, 2019, 34(1):77-92.
[101] Folke C, Carpenter S R, Walker B, et al. Resilience thinking:integrating resilience, adaptability and trans-formability[J]. Ecology and Society, 2010, 15(4):299-305.
[102] Li W, Li J, Liu S, et al. Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China[J]. Land Degradation and Development, 2017, 28(1):370-378.
[103] Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management[J]. Ecological Applications, 2000, 10(5):1251-1262.
[104] Ren Y, Lü Y, Fu B. Quantifying the impacts of grass-land restoration on biodiversity and ecosystem services in China:A meta-analysis[J]. Ecological Engineering, 2016, 95:542-550.
[105] Zhen L, Du B, Wei Y, et al. Assessing the effects of ecological restoration approaches in the alpine range-lands of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2018, 13(9):095005.
[106] Li X R, Xiao H L, He M Z, et al. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions[J]. Ecological Engineering, 2006, 28(2):149-157.
[107] Li X L, Gao J, Brierley G, et al. Rangeland degradation on the Qinghai-Tibet plateau:Implications for rehabilitation[J]. Land Degradation and Development, 2013, 24(1):72-80.
[108] 蒋胜竞, 冯天骄, 刘国华, 等. 草地生态修复技术应用的文献计量分析[J]. 草业科学, 2020, 37:1-18.
[109] Wen L, Dong S, Li Y, et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau[J]. Plant and Soil, 2013, 368(1-2):329-340.
Outlines

/