[1] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1):1-8.
[2] 秦大河, 赵新全, 丁永建, 等. 三江源区生态保护与可持续发展[M]. 北京:科学出版社, 2014.
[3] 徐祥德, 董李丽, 赵阳, 等. 青藏高原"亚洲水塔" 效应和大气水分循环特征[J]. 科学通报, 2019, 64(27):2830-2841.
[4] 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27):2783-2795.
[5] 杨扬, 陈建国, 宋波, 等. 青藏高原冰缘植物多样性与适应机制研究进展[J]. 科学通报, 2019, 64(27):2856-2864.
[6] 苏大学. 1:1000000中国草地资源图的编制与研究[J]. 自然资源学报, 1996, 11(1):75-83.
[7] Chen B, Zhang X, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and For-est Meteorology, 2014, 189:11-18.
[8] 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64(27):2842-2855.
[9] 张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64(27):2865-2875.
[10] Feng Y, Zhu J, Zhao X, et al. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015[J]. Environmental Research Letters, 2019, 14(12):124009.
[11] 戴睿, 刘志红, 娄梦筠, 等. 藏北那曲地区草地退化时空特征分析[J]. 草地学报, 2013, 21(1):37-41.
[12] 李波, 邵怀勇. 气候变化与人类活动对川西高原草地变化相对作用的定量评估[J]. 草学, 2017(3):16-21.
[13] 曹广民, 林丽, 张法伟, 等. 青藏高原高寒矮嵩草草甸稳定性的维持、丧失与恢复[J]. 草业科学, 2010, 27(8):34-38.
[14] 尚占环, 董全民, 施建军, 等. 青藏高原"黑土滩" 退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报, 2018, 26(1):1-21.
[15] 骆成凤, 许长军, 游浩妍, 等. 2000-2010年青海湖流域草地退化状况时空分析[J]. 生态学报, 2013, 33(14):4450-4459.
[16] 尚占环, 姬秋梅, 多吉顿珠, 等. 西藏"一江两河" 农区草业发展探讨[J]. 草业科学, 2009, 26(8):141-146.
[17] 马玉寿, 周华坤, 邵新庆, 等. 三江源区退化高寒生态系统恢复技术与示范[J]. 生态学报, 2016, 36(22):7078-7082.
[18] 张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复:退化现状, 恢复措施, 效应与展望[J]. 生态学报, 2019, 39(20):7441-7451.
[19] Han J G, Zhang Y J, Wang C J, et al. Rangeland degra-dation and restoration management in China[J]. The Rangeland Journal, 2008, 30(2):233-239.
[20] Yan Y, Lu X. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?[J]. PeerJ, 2015, 3:e1020.
[21] Zhang C, Liu G, Song Z, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochem-istry, 2018, 124:47-58.
[22] Wu X, Wang Y, Sun S. Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan Plateau[J]. Plant and Soil, 2019, 1-10.
[23] Cao J, Li G, Adamowski J F, et al. Suitable exclosure duration for the restoration of degraded alpine grass-lands on the Qinghai-Tibetan Plateau[J]. Land Use Policy, 2019, 86:261-267.
[24] Zhu J, Zhang Y, Liu Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow[J]. Scientific Reports, 2016, 6(1):1-9.
[25] Wang C T, Wang G X, Liu W, et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow[J]. Israel Journal of Ecology and Evolution, 2013, 59(3):141-153.
[26] Xu L, Yao B, Wang W, et al. Effects of plant species richness on 13C assimilate partitioning in artificial grass-lands of different established ages[J]. Scientific Reports, 2017, 7(1):1-11.
[27] Vander Mijnsbrugge K, Bischoff A, Smith B. A question of origin:where and how to collect seed for ecological restoration[J]. Basic and Applied Ecology, 2010, 11(4):300-311.
[28] Feng R, Long R, Shang Z, et al. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China[J]. Plant and Soil, 2010, 327(1-2):403-411.
[29] Li L, Fassnacht F E, Storch I, et al. Land-use regime shift triggered the recent degradation of alpine pastures in Nyanpo Yutse of the eastern Qinghai-Tibetan Plateau[J]. Landscape Ecology, 2017, 32(11):2187-2203.
[30] Song M H, Yu F H. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau[J]. New Phytologist, 2015, 207(1):70-77.
[31] Kang J, Zhao M, Tan Y, et al. Sand-fixing characteristics of Carex brunnescens and its application with straw checkerboard technique in restoration of degraded alpine meadows[J]. Journal of Arid Land, 2017, 9(5):651-665.
[32] Harris R B, Wenying W, Badinqiuying A T S, et al. Herbivory and competition of Tibetan steppe vegetation in winter pasture:effects of livestock exclosure and plateau pika reduction[J]. PLoS One, 2015, doi:10.1371/journal. pone.0132897.
[33] Li Y, Dong S, Wen L, et al. Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2012, 49:77-83.
[34] Li Y Y, Dong S K, Wen L, et al. Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai-Tibetan Plateau[J]. Geoderma, 2014, 213:178-184.
[35] Che R, Wang F, Wang W, et al. Increase in ammoniaoxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss[J]. Biogeochemistry, 2017, 136(3):341-352.
[36] 李希来. 青藏高原"黑土滩" 形成的自然因素与生物学机制[J]. 草业科学, 2002, 19(1):20-22.
[37] 马玉寿, 尚占环, 施建军, 等. 黄河源区"黑土型"退化草地人工群落组分配置技术研究[J]. 西北农业学报, 2007, 16(5):1-6.
[38] Shang Z H, Ma Y S, Long R J, et al. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the yangtze and the yellow rivers of the QinghaiTibetan Plateau[J]. Land Degradation and Development, 2008, 19(5):554-563.
[39] Tilman D, Downing J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461):363-365.
[40] Bai Y, Han X, Wu J, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005):181-184.
[41] Hautier Y, Tilman D, Isbell F, et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity[J]. Science, 2015, 348(6232):336-340.
[42] 徐炜, 马志远, 井新, 等. 生物多样性与生态系统多功能性:进展与展望[J]. 生物多样性, 2016, 24(1):55-71.
[43] Shinneman D J, Baker W L, Lyon P. Ecological restoration needs derived from reference conditions for a semiarid landscape in Western Colorado, USA[J]. Journal of Arid Environments, 2008, 72(3):207-227.
[44] Vander Mijnsbrugge K, Bischoff A, Smith B. A question of origin:where and how to collect seed for ecological restoration[J]. Basic and Applied Ecology, 2010, 11(4):300-311.
[45] Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function:are there any links?[J]. Ecology, 2003, 84(8):2042-2050.
[46] Ma T, Zhu S, Wang Z, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils[J]. Nature Communications, 2018, 9(1):1-9.
[47] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7):1676-1689.
[48] Wardle D A, Bardgett R D, Klironomos J N, et al. Eco-logical linkages between aboveground and belowground biota[J]. Science, 2014, 304(5677):1629-1633.
[49] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451(7176):289-292.
[50] Wardle D A, Bardgett R D, Klironomos J N, et al. Eco-logical linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633.
[51] Bardgett R D, Putten W H V D. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
[52] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceeding of the National Academy of Sciences, 2014, 111(14):5266-5270.
[53] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):1-10.
[54] 赵文, 尹亚丽, 李世雄, 等. 植被重建对黑土滩草地植被及微生物群落特征的影响[J]. 生态环境学报, 2020, 29(1):71-80.
[55] Ma X, Zhang Q, Zheng M, et al. Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing[J]. The ISME Journal, 2019, 13(5):1370-1373.
[56] 薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子[J]. 科学通报, 2019, 64(27):2915-2927.
[57] 李海云, 姚拓, 张建贵, 等. 不同扰动高寒草地土壤微生物数量时空变化特征[J]. 水土保持学报, 2018, 32(4):177-183.
[58] Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems and Environment, 2016, 222:213-222.
[59] Singh A K, Bordoloi L J, Kumar M, et al. Land use impact on soil quality in eastern Himalayan region of India[J]. Environmental Monitoring and Assessment, 2014, 186(4):2013-2024.
[60] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1):807-838.
[61] Barea J M, Pozo M J, Azcon R, et al. Microbial cooperation in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56:1761-1778.
[62] Tkacz A, Cheema J, Chandra G, et al. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition[J]. The ISME Journal, 2015, 9(11):2349-2359.
[63] Pii Y, Borruso L, Brusetti L, et al. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome[J]. Plant Physiology and Biochemistry, 2016, 99:39-48.
[64] Wubs E R J, Van der Putten W H, Bosch M, et al. Soil inoculation steers restoration of terrestrial ecosystems[J]. Nature Plants, 2016, 2(8):1-5.
[65] Rehman B, Hassan T U, Bano A. Potential of indole-3-acetic acid-producing rhizobacteria to resist Pb toxicity in polluted soil[J]. Soil and Sediment Contamination:An International Journal, 2019, 28(1):101-121.
[66] Forghani A H, Almodares A, Ehsanpour A A. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor[L.] Moench cv. Sofra)[J]. Applied Biological Chemistry, 2018, 61(1):113-124.
[67] Masciarelli O, Llanes A, Luna V. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation[J]. Microbiological Research, 2014, 169(7-8):609-615.
[68] Oberson A, Frossard E, Buehlmann C, et al. Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems[J]. Plant and Soil, 2013, 371(1-2):237-255.
[69] 燕永亮, 李力, 李俊. 根际固氮微生物功能基因组及微生物肥料研究进展[J]. 中国农业科技导报, 2011, 13(5):93-101.
[70] You Q G, Xue X, Peng F, et al. Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China[J]. Eco-logical Engineering, 2014, 71:133-143
[71] 曹建军, 王雪艳, 李梦天, 等. 青藏高原草地管理方式对土壤养分及其空间分布的影响[J]. 应用生态学报, 2018, 29(6):1839-1845.
[72] Shang Z, Long R. Formation causes and recovery of the "Black Soil Type" degraded alpine grassland in Qinghai-Tibetan Plateau[J]. Frontiers of Agriculture in China, 2007, 1(2):197-202.
[73] 李明森. 藏北高原草地资源合理利用[J]. 自然资源学报, 2000, 15(4):335-339.
[74] Li X R, Jia X H, Dong G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China[J]. Journal of Arid Environments, 2006, 64(3):505-522.
[75] Dong S K, Wen L, Li Y Y, et al. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau[J]. Soil Science Society of America Journal, 2012, 76(6):2256-2264.
[76] Dong S, Li J, Li X, et al. Application of design theory for restoring the "black beach" degraded rangeland at the headwater areas of the Qinghai-Tibetan Plateau[J]. African Journal of Agricultural Research, 2012, 5(5):3542-3552.
[77] 高旭升, 田种存, 郝学宁, 等. 三江源区高寒草原草地不同退化程度土壤养分变化[J]. 青海大学学报(自然科学版), 2006, 24(5):37-40.
[78] 孙建, 张振超, 董世魁. 青藏高原高寒草地生态系统的适应性管理[J]. 草业科学, 2019, 36(4):933-938.
[79] 马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究[J]. 草业科学, 2002, 19(9):1-5.
[80] 施建军, 邱正强, 马玉寿."黑土型" 退化草地上建植人工草地的经济效益分析[J]. 草原与草坪, 2007, 1:60-64.
[81] Folke C, Hahn T, Olsson P, et al. Adaptive governance of social-ecological systems[J]. Annual Review of Environment and Resources, 2005, 30(1):441-473.
[82] Garmestani A S, Allen C R. Adaptive management of social-ecological systems:The path forward[M]. Dordrecht:Springer, 2015:255-262.
[83] Walters C. Adaptive management of renewable resources[M]. London:Collier Macmillan Publishers, 1986.
[84] Allen C R, Angeler D G, Fontaine J J, et al. Adaptive management of rangeland systems[M]. Dordrecht:Springer International Publishing, 2017:373-394.
[85] Wolf J, Allice I, Bell T. Values, climate change, and implications for adaptation:Evidence from two communities in Labrador, Canada[J]. Global Environmental Change, 2013, 23(2):548-562.
[86] O'Brien K L, Wolf J. A values-based approach to vulnerability and adaptation to climate change[J]. Wiley Interdisciplinary Reviews:Climate Chang, 2010, 1(2):232-242.
[87] Bürgi M, Straub A, Gimmi U, et al. The recent land-scape history of Limpach valley, Switzerland:considering three empirical hypotheses on driving forces of land-scape change[J]. Landscape Ecology, 2010, 25(5):287-297.
[88] De Vitis M, Abbandonato H, Dixon K W, et al. The European native seed industry:Characterization and perspectives in grassland restoration[J]. Sustainability, 2017, 9(10):1682.
[89] Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress[J]. Annals of Microbiology, 2015, 65(3):1627-1637.
[90] Sarkar J, Chakraborty B, Chakraborty U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury[J]. Journal of Plant Growth Regulation, 2018, 37(4):1396-1412.
[91] Hwang E J, Lee Y S, Choi Y L. Cloning, purification, and characterization of the organic solvent tolerant β-glucosidase, OaBGL84, from Olleya aquimaris DAU311[J]. Applied Biological Chemistry, 2018, 61(3):325-336.
[92] Tiepo A N, Hertel M F, Rocha S S, et al. Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria[J]. Plant Physiology and Biochemistry, 2018, 130:277-288.
[93] Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review[J]. Microbiological Research, 2018, 209:21-32.
[94] 陈冬明, 张楠楠, 刘琳, 等. 不同恢复措施对若尔盖沙化草地的恢复效果比较[J]. 应用与环境生物学报, 2016, 22(4):573-578.
[95] 王长庭, 龙瑞军, 王启兰, 等. 三江源区不同建植年代人工草地群落演替与土壤养分变化[J]. 应用与环境生物学报, 2009, 15(6):737-744.
[96] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.
[97] Güsewell S, Verhoeven J T A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter[J]. Plant and Soil, 2006, 287(1/2):131-143.
[98] Sardans J, Rivas-Ubach A, Penuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function:A review and perspectives[J]. Biogeochemistry, 2012, 111(1-3):1-39.
[99] Savory A. Holistic management:a new framework for decision making 2nd edition[J]. American Journal of Alter-native Agriculture, 1999, 14(2):93-94.
[100] Sherren K, Kent C. Who's afraid of Allan Savory? Scientometric polarization on Holistic Management as competing understandings[J]. Renewable Agriculture and Food Systems, 2019, 34(1):77-92.
[101] Folke C, Carpenter S R, Walker B, et al. Resilience thinking:integrating resilience, adaptability and trans-formability[J]. Ecology and Society, 2010, 15(4):299-305.
[102] Li W, Li J, Liu S, et al. Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China[J]. Land Degradation and Development, 2017, 28(1):370-378.
[103] Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management[J]. Ecological Applications, 2000, 10(5):1251-1262.
[104] Ren Y, Lü Y, Fu B. Quantifying the impacts of grass-land restoration on biodiversity and ecosystem services in China:A meta-analysis[J]. Ecological Engineering, 2016, 95:542-550.
[105] Zhen L, Du B, Wei Y, et al. Assessing the effects of ecological restoration approaches in the alpine range-lands of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2018, 13(9):095005.
[106] Li X R, Xiao H L, He M Z, et al. Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions[J]. Ecological Engineering, 2006, 28(2):149-157.
[107] Li X L, Gao J, Brierley G, et al. Rangeland degradation on the Qinghai-Tibet plateau:Implications for rehabilitation[J]. Land Degradation and Development, 2013, 24(1):72-80.
[108] 蒋胜竞, 冯天骄, 刘国华, 等. 草地生态修复技术应用的文献计量分析[J]. 草业科学, 2020, 37:1-18.
[109] Wen L, Dong S, Li Y, et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau[J]. Plant and Soil, 2013, 368(1-2):329-340.