[1] Ulm F J, Abousleiman Y. The nanogranular nature of shale[J]. Acta Geotechnica, 2006, 1(2):77-88.
[2] Bobko C, Ulm F J. The nano-mechanical morphology of shale[J]. Mechanics of Materials, 2008, 40(4):318-337.
[3] Abousleiman Y N, Hull K L, Han Y, et al. The granular and polymer composite nature of kerogen-rich shale[J]. Acta Geotechnica, 2016, 11(3):573-594.
[4] Goodarzi M, Rouainia M, Aplin A C, et al. Predicting the elastic response of organic-rich shale using nanoscale measurements and homogenisation methods[J]. Geophysical Prospecting, 2017, 65(6):1597-1614.
[5] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(11/12):848-861.
[6] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916-927.
[7] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8):16-21.
[8] Larsen B, Gudmundsson A. Linking of fractures in layered rocks:Implications for permeability[J]. Tectonophysics, 2010, 492(1/2/3/4):108-120.
[9] Ghani I, Koehn D, Toussaint R, et al. Dynamic development of hydrofracture[J]. Pure and Applied Geophysics, 2013, 170(11):1685-1703.
[10] Jin L, Hawthorne S, Sorensen J, et al. Advancing CO2 enhanced oil recovery and storage in unconventional oil play:Experimental studies on Bakken shales[J]. Applied Energy, 2017, 208:171-183.
[11] Vernik L, Milovac J. Rock physics of organic shales[J]. The Leading Edge, 2011, 30(3):318-323.
[12] Eliyahu M, Emmanuel S, Day-Stirrat R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59:294-304.
[13] Lynk J M, Papandrea R, Collamore A, et al. Hydraulic fracture completion optimization in fayetteville shale:Case study[J]. International Journal of Geomechanics, 2017, 17(2):14.
[14] Tarasov B, Potvin Y. Universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59:57-69.
[15] Hu R, Vernik L, Nayvelt L, et al. Seismic inversion for organic richness and fracture gradient in unconventional reservoirs:Eagle ford shale, Texas[J]. The Leading Edge, 2014, 34(1):80-84.
[16] Herrmann J, Rybacki E, Sone H, et al. Deformation experiments on bowland and posidonia shalePart I:Strength and Young's modulus at ambient and in situ pcT conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(12):3645-3666.
[17] Rybacki E, Reinicke A, Meier T, et al. What controls the mechanical properties of shale rocks? Part I:Strength and Young's modulus[J]. Journal of Petroleum Science and Engineering, 2015, 135:702-722.
[18] Rybacki E, Meier T, Dresen G. What controls the mechanical properties of shale rocks? Part Ⅱ:Brittleness[J]. Journal of Petroleum Science and Engineering, 2016, 144:39-58.
[19] Alstadt K N, Katti K S, Katti D R. Nanoscale morphology of kerogen and in situ nanomechanical properties of Green River oil shale[J]. Journal of Nanomechanics and Micromechanics, 2016, 6(1):401-405.
[20] Li C, Ostadhassan M, Gentzis T, et al. Nanomechanical characterization of organic matter in the Bakken formation by microscopy-based method[J]. Marine and Petroleum Geology, 2018, 96:128-138.
[21] Hu C, Li Z. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90:80-90.
[22] Ougier-Simonin A, Renard F, Boehm C, et al. Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162:198-226.
[23] Thomas J J, Valenza J J, Craddock P R, et al. The neutron scattering length density of kerogen and coal as determined by CH3OH/CD3OH exchange[J]. Fuel, 2014, 117:801-808.
[24] Okiongbo K S, Aplin A C, Larter S R. Changes in type Ⅱ kerogen density as a function of maturity:Evidence from the Kimmeridge Clay Formation[J]. Energy & Fuels, 2005, 19(6):2495-2499.
[25] Ungerer P, Collell J, Yiannourakou M. Molecular modeling of the volumetric and thermodynamic properties of kerogen:Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1):91-105.
[26] Emmanuel S, Eliyahu M, Macaulay C I, et al. Softening of organic matter in shales at reservoir temperatures[J]. Petroleum Geoscience, 2016, 23(2):262-269.
[27] Ju Y W, Sun Y, Tan J Q, et al. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China[J]. Fuel, 2018, 234:626-642.
[28] Zhu H J, Ju Y W, Huang C, et al. Pore structure variations across structural deformation of Silurian Longmaxi Shale:An example from the Chuandong Thrust-Fold Belt[J]. Fuel, 2019, 241:914-932.
[29] Hasan M R, Reza M T. Hydrothermal deformation of Marcellus shale:Effects of subcritical water temperature and holding time on shale porosity and surface morphology[J]. Journal of Petroleum Science and Engineering, 2019, 172:383-390.
[30] Ahmadov R, Vanorio T, Mavko G. Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov Formation[J]. The Leading Edge, 2009, 28(1):18-23.
[31] Panahi Hamed, Kobchenko Maya, Meakin Paul, et al. Fluid expulsion and microfracturing during the pyrolysis of an organic rich shale[J]. Fuel, 2019, 235:1-16.
[32] Manjunath G L, Jha B. Geomechanical characterization of gondwana shale across nano-micro-meso scales[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119:35-45.
[33] Cheng Y T, Cheng C M. Scaling, dimensional analysis, and indentation measurements[J]. Materials Science and Engineering:R:Reports, 2004, 44(4):91-149.
[34] Zhu W, Hughes J J, Bicanic N, et al. Nanoindentation mapping of mechanical properties of cement paste and natural rocks[J]. Materials Characterization, 2007, 58(11):1189-1198.
[35] Fan M, Jin Y, Chen M, et al. Mechanical characterization of shale through instrumented indentation test[J]. Journal of Petroleum Science and Engineering, 2019, 174:607-616.
[36] Shi X, Jiang S, Lu S, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests:A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1):163-172.
[37] Liu K, Ostadhassan M, Bubach B. Applications of nanoindentation methods to estimate nanoscale mechanical properties of shale reservoir rocks[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1310-1319.
[38] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 2011, 7(6):1564-1583.
[39] Zhao J, Zhang D, Wu T, et al. Multiscale approach for mechanical characterization of organic-rich shale and its application[J]. International Journal of Geomechanics, 2019, 19(1):04018180.
[40] Han Q, Chen P, Ma T. Influencing factor analysis of shale micro-indentation measurement[J]. Journal of Natural Gas Science and Engineering, 2015, 27:641-650.
[41] Wang D, Liang X, Russell T P, et al. Visualization and quantification of the chemical and physical properties at a diffusion-induced interface using AFM nanomechanical mapping[J]. Macromolecules, 2014, 47(11):3761-3765.
[42] Niu Y F, Yang Y, Gao S, et al. Mechanical mapping of the interphase in carbon fiber reinforced poly(etherether-ketone) composites using peak force atomic force microscopy:Interphase shrinkage under coupled ultraviolet and hydro-thermal exposure[J]. Polymer Testing, 2016, 55:257-260.
[43] Asgari H, Ramezanianpour A A, Butt H J. Nano-mechanical behavior of calcium silicate hydrate and calcium hydroxide in cement paste:Elevated Peak-Force study[J]. International Journal of Civil Engineering, 2018, 16(3):273-280.
[44] Javadpour F, Moravvej F M, Amrein M. Atomic-force microscopy:A new tool for gas-shale characterization[J]. Journal of Canadian Petroleum Technology, 2012, 51(4):236-243.
[45] Tian S C, Dong X X, Wang T Y, et al. Surface properties of organic kerogen in continental and marine shale[J]. Langmuir, 2018, 34(46):13882-13887.
[46] Kumar S, Das S, Bastia R, et al. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India:Implication for shale oil/gas development[J]. Marine and Petroleum Geology, 2018, 97:339-354.
[47] Trtik P, Kaufmann J, Volz U. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1):215-221.
[48] Pittenger B, Erina N, Su C. Mechanical property mapping at the nanoscale using PeakForce QNM scanning probe technique[J]. Solid Mechanics and its Applications, 2014, 203:31-51.
[49] Abedi S, Slim M, Hofmann R, et al. Nanochemo-mechanical signature of organic-rich shales:A coupled indentation-EDX analysis[J]. Acta Geotechnica, 2016, 11(3):559-572.
[50] Zargari S, Wilkinson T M, Packard C E, et al. Effect of thermal maturity on elastic properties of kerogen[J]. Geophysics, 2016, 81(2):M1-M6.
[51] Zeszotarski J C, Chromik R R, Vinci R P, et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica et Cosmochimica Acta, 2004, 68(20):4113-4119.
[52] Kumar V, Curtis M E, Gupta N, et al. Estimation of elastic properties of organic matter in woodford shale through nanoindentation measurements[C]//SPE Canadian Unconventional Resources Conference. Richardson:Society of Petroleum Engineers, 2012:11.
[53] Kumar V, Sondergeld C H, Rai C S. Nano to macro mechanical characterization of shale[C]//SPE Annual Technical Conference and Exhibition. Richardson:Society of Petroleum Engineers, 2012:23.
[54] Bennett K C, Berla L A, Nix W D, et al. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales[J]. Acta Geotechnica, 2015, 10(1):1-14.
[55] Abedi S, Slim M, Ulm F J. Nanomechanics of organicrich shales:The role of thermal maturity and organic matter content on texture[J]. Acta Geotechnica, 2016, 11(4):775-787.
[56] Sharma P, Prakash R, Abedi S. Effect of temperature on nano- and microscale creep properties of organic-rich shales[J]. Journal of Petroleum Science and Engineering, 2019, 175:375-388.
[57] Bao Y W, Wang W, Zhou Y C. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements[J]. Acta Materialia, 2004, 52(18):5397-5404.
[58] Chen P, Han Q, Ma T, et al. The mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 2015, 42(5):723-732.
[59] Qin X, Han D H, Zhao L. Rock physics modeling of organic-rich shales with different maturity levels[C]//SEG Technical Program Expanded Abstracts 2014. Tulsa:Society of Exploration Geophysicists, 2014:2952-2957.
[60] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2):177-200.
[61] Ko L T, Ruppel S C, Loucks R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones:Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190:3-28.
[62] Nie H, Sun C, Liu G, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China:Implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101:243-251.
[63] Ji W, Song Y, Rui Z, et al. Pore characterization of isolated organic matter from high matured gas shale reservoir[J]. International Journal of Coal Geology, 2017, 174:31-40.
[64] Wu C, Tuo J, Zhang L, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017, 178:13-25.
[65] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103:26-31.
[66] Akono A T, Kabir P. Influence of geochemistry on toughening behavior of organic-rich shale[J]. Acta Geotechnica, 2019, 14(4):1129-1142.
[67] Hull K L, Abousleiman Y N, Han Y, et al. Nanomechanical characterization of the tensile modulus of rupture for kerogen-rich shale[J]. SPE Journal, 2017, 22(4):1024-1033.
[68] Zhu H J, Ju Y W, Lu W D, et al. The characteristics and evolution of micro-nano scale pores in shales and coals[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9):6124-6138.
[69] Chandler M R, Meredith P G, Brantut N, et al. Fracture toughness anisotropy in shale[J]. Journal Of Geophysical Research-Solid Earth, 2016, 121(3):1706-1729.
[70] Sayers C M. The effect of kerogen on the elastic anisotropy of organic-rich shales[J]. Geophysics, 2013, 78(2):D65-D74.
[71] Wang Q, Wang Y, Guo S G, et al. The effect of shale properties on the anisotropic brittleness criterion index from laboratory study[J]. Journal of Geophysics and Engineering, 2015, 12(5):866-874.
[72] Carcione J M, Helle H B, Avseth P. Source-rock seismic-velocity models:Gassmann versus Backus[J]. Geophysics, 2011, 76(5):N37-N45.
[73] Yang L, Wu X Y, Chapman M. Impacts of kerogen content and fracture properties on the anisotropic seismic reflectivity of shales with orthorhombic symmetry[J]. Interpretation-A Journal of Subsurface Characterization, 2015, 3(3):ST1-ST7.
[74] Yang J, Hatcherian J, Hackley P C, et al. Nanoscale geochemical and geomechanical characterization of organic matter in shale[J]. Nature Communications, 2017, 8(1):2179.