Exclusive: Large Experimental Equipment and Planning in Light, Cosmic Ray and Space Study

Development status and application prospect of near space science and technology

  • HUANG Wanning ,
  • ZHANG Xiaojun ,
  • LI Zhibin ,
  • WANG Sheng ,
  • HUANG Min ,
  • CAI Rong
Expand
  • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Received date: 2018-12-06

  Revised date: 2019-03-08

  Online published: 2019-11-15

Abstract

This paper introduces the special space location and typical meteorological characteristics of the near space, combs the situation of scientific exploration and research on the near space through space-based, ground-based and in-situ platforms at home and abroad. To aim at the current situation of insufficient understanding of the near space, the paper argues that the scientific exploration and application of the near space should take the near space vehicle as the main platform, whose technological development and application status are reviewed including high-altitude balloons, stratospheric airships and solar long-range UAVs in military and civil markets. Finally the condenses some key issues that need attention and puts forward some concrete suggestions for the near space development and application of our country.

Cite this article

HUANG Wanning , ZHANG Xiaojun , LI Zhibin , WANG Sheng , HUANG Min , CAI Rong . Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019 , 37(21) : 46 -62 . DOI: 10.3981/j.issn.1000-7857.2019.21.005

References

[1] 吕达仁, 陈泽宇, 郭霞, 等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39(6):674-682. Lü Daren, Chen Zeyu, Guo Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6):674-682.
[2] Widiawan A K, Tafazolli R. High altitude platform station (HAPS):A review of new infrastructure development for future wireless communications[J]. Wireless Personal Communications, 2007, 42(3):387-404.
[3] Stephens H. Near-sPACE[J]. Air Force Magazine, 2005, 88(7):36-40.
[4] Allen E H. The case for near space[J]. Aerospace America, 2006, 4(2):31-34.
[5] 童靖宇, 向树红. 临近空间环境及环境试验[J], 装备环境工程, 2012, 9(3):1-4. Tong Jingyu, Xiang Shuhong. Near space environment and environment tests[J]. Equipment Environmental Engineering, 2012, 9(3):1-4.
[6] 康士峰. 临近空间大气环境特性监测与研究[J]. 2008, 5(1):20-23. Kang Shifeng. Monitoring and study of atmospheric environment in near space[J]. Equipment Environmental Engineering, 2008, 5(1):20-23.
[7] 韩丁, 盛夏, 尹珊建, 等. 临近空间大气参数误差特性分析[J]. 遥感学报, 2017, 21(1):149-158. Han Ding, Sheng Xia, Yin Shanjian, et al. Deviation characteristics for atmospheric parameters in near space[J]. Journal Remote Sensing, 2017, 21(1):149-158.
[8] 陈闽慷, 杜涛, 胡雄, 等. 北半球高空大气参数波动对临近空间飞行热环境的影响[J]. 科学通报, 2017, 62(13):1402-1409. Chen MinKang, Du Tao, Hu Xiong, et al. Effect of atmosphere parameter oscillation at high altitude in the northern hemisphere for near space hypersonic flight aerothermodynamic perdiction[J]. Science China Press, 2017, 62(13):1402-1409.
[9] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3), doi:10.7654/j.issn.1004-7182.20180301. Lu Yu, Cai Qiaoyan, Wang Fei. Research on nearby space and reuse technology[J]. Missile and Space Delivery Technology, 2018(3), doi:10.7654/j.issn.1004-7182. 20180301.
[10] 柴霖. 临近空间测控系统技术特征分析[J]. 宇航学报, 2010, 31(7):1697-1705. Chai Lin. Technical characteristics analysis of the TT&C communication system for near space vehicle[J]. Journal of Astronautics, 2010, 31(7):1697-1705.
[11] 汪连栋, 曾勇虎, 高磊, 等. 临近空间高超声速目标雷达探测技术现状与趋势[J]. 信号处理, 2014, 30(1):72-85. Wang Liandong, Zeng Yonghu, Gao Lei, et al. Technology status and development trend for radar detection of hypersonic target in near space[J]. Signal Processing, 2014, 30(1):72-85.
[12] Kim D. A survey of balloon networking applications and technologies[M]//Destructive Myths in Family Therapy:How to Overcome Barriers to Communication by Seeing and Saying-A Humanistic Perspective. Hoboken:Wiley-Blackwell, 2012.
[13] 兰顺正. 物美价廉的临近空间长航时平台[J]. 太空探索, 2018(1):54-56. Lan Shunzheng. Cheap proximity to space long voyage platform[J]. Space Exploration, 2018(1):54-56
[14] 冯超, 邵胜利, 王芳栋, 等. 探空火箭在临近空间气象保障中的应用研究[J]. 测控技术, 2018, 37(5):21-24. Feng Chao, Shao Shengli, Wang Fangdong, et al. Research on the application of sounding rocket in near space meteorological support[J]. Measurement & Control Technology, 2018, 37(5):21-24.
[15] U. S. Government Accountability Office. Future aerostat and airship investment decisions drive oversight and coordination needs[R]. Washington D C:U. S. Government Accountability Office, 2012.
[16] 兰顺正. 临近空间高超声速飞行器的军事应用[J]. 太空探索, 2018(1):57-61. Lan Shunzheng. Military application of hypersonic vehicle near space[J]. Space Discovery, 2018(1):57-61.
[17] 吴潜. 临近空间飞行器武器装备建设发展思考[J]. 电讯技术, 2009, 49(8):98-102. Wu Qian. Development thought for weapon equipment construction based on near space aerocrafts[J]. Telecommunication Engineering, 2009, 49(8):98-102.
[18] Yajima N, Izutsu N, Imamura T, et al. Scientific ballooning:Technology and applications of exploration balloons floating in the stratosphere and the atmospheres of other planets[M]. New York:Springer, 2009.
[19] Young M, Keith S, Pancotti A. An overview of advanced concepts for near-space systems[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. New York:AIAA, 2005.
[20] Cathey H M. The NASA super pressure balloon-A path to flight[J]. Advances in Space Research, 2009, 44(1):23-38.
[21] 祝榕辰, 王生. 超压气球研究与发展现状[C]//第二十四届全国空间探测学术交流会论文集. 北京:中国空间科学学会, 2011:3-4. Zhu Rongchen, Wang Sheng. Research and development status of super pressure balloon[C]//24th National Academic Exchange on Space Exploration. Beijing:Chinese Society of Space Science, 2011:3-4.
[22] 袁立群, 黄良平. 国外临近空间超长航时无人机发展及应用情况综述[J]. 战术导弹技术, 2018(2):26-30. Yuan Liqun, Huang Lianping. A summary of the development and application of uavs in near-space spaces in foreign countries[J]. Tactical Missile Technology, 2018(2):26-30.
[23] Noll T E, Ishmael D, Henwood B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototypevehicle mishap[R/OL].[2019-01-31]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070022260.pdf.
[24] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018(2):22-31. Li Chenfei, Jiang Luhua. Research status and key techniques of solar UAV in near space long voyae[J]. Ba-sic Science of China, 2018(2):22-31.
[25] Smith S, Fortenberry M, Michael L, et al. HiSentinel80:Flight of a high altitude airship[C]//Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. New York:AIAA, 2011, doi:10.2514/6.2011-6973.
[26] Department of Defense. Summary report of DoD funded lighter-than-air vehicles[R]. Washington D C:Office of the Assistant Secretary of Defense for Research and Engineering, 2012.
[27] 肖益军. 复合式临近空间新概念飞艇总体技术研究[J]. 新型工业化, 2017, 7(2):54-59. Xiao Yijun. Study on general techniques of novel compound airship in near space[J]. The Journal of New Industrialization, 2017, 7(2):54-59.
[28] 赵亮, 董鹏署, 李宗亭, 等. 平流层飞艇载SIAR雷达系统探测能力分析[J]. 舰船电子对抗, 2017, 40(3):32-34. Zhao Liang, Dong Pengshu, Li Zongting, et al. Analysis of detection capability of stratospheric airship-based siar radar system[J]. Shipboard Electronic Countermeasure, 2017, 40(3):32-34.
[29] 董宇辉, 王红, 程杨, 等. 平流层飞艇载雷达电磁波的衰减问题建模及分析[J]. 空军预警学院学报, 2018, 32(2):34-39. Dong Yuhui, Wang Hong, Cheng Yang, et al. Modeling and analysis of attenuation of electromagnetic waves in stratospheric airship radar[J]. Journal of Air Force Early Waring College, 2018, 32(2):34-39.
[30] 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5):1259-1265. Huang Wei, Luo Shibiin, Wang Zhenguo. Key technologes and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5):1259-1265.
[31] 郭劲. 临近空间飞行器军事应用价值分析[J]. 光机电信息, 2010, 27(8):22-27. Guo Jin. Military application value of near space vehicle[J]. OME Information, 2010, 27(8):22-27.
[32] 姜秀杰, 刘波, 于世强, 等. 探空火箭的发展现状及趋势[J]. 科技导报, 2010, 27(23):101-110. Jiang Xiujie, Liu Bo, Yu Shiqiang, et al. Development status and trend of sounding rocket[J]. Science and Technology Review, 2009, 27(23):101-110.
[33] Khandelwal N. Google Loons-Balloon Powered internet access via stratosphere[J]. SSRG International Journal of Computer Science and Engineering, 2016, 3(8):92-94.
[34] Li C L, Luo R Y, Chen T X. New idea for stratospheric communications-Google Loon[J]. Communications Technology, 2015, 48(2):125-129.
[35] Araniti G, Iera A, Molinaro A. The role of HAPs in supporting multimedia broadcast and multicast services in terrestrial-satellite integrated systems[J]. Wireless Personal Communications, 2005, 32(3/4):195-213.
[36] 杨虹, 张雅声, 丁文哲, 等. 探测临近空间高声速目标的飞艇组网方法研究[J]. 现代防御技术, 2017, 45(2):40-48. Yang Hong, Zhang Yasheng, Ding Wenzhe, et al. Networking design of airship for detecting high dynamic target in near space[J]. Modern Defence Technology, 2017, 45(2):40-48.
[37] Lee Y C, Ye H. Sky Station Stratospheric Telecommunications System, a high speed low latency switched wireless network[C]//17th AIAA International Communications Satellite Systems Conference and Exhibit. New York:AIAA, 1998:2-31.
[38] 刘志峰, 孙振明, 贾越普. 基于天地一体化网络架构的临近空间接入网协议设计与研究[J]. 南京大学学报(自然科学), 2018, 54(3):80-88. Liu Zhifeng, Sun Zhenming, Jia Yuepu. Design and research of near space access network protocol based on heaven and earth integration network architecture[J]. Journal of Nanjing University (Natural Science), 2018, 54(3):80-88.
[39] 黄宛宁, 李智斌, 张晓军, 等. 基于浮空器平台的临近空间骨干网络构想[C]//第四届高分辨率对地观测学术年会论文集. 北京:中国科学院高分重大专项管理办公室, 2017. Huang Wanning, Li Zhibin, Zhang Xiaojun, et al. The conceive of near space backbone network based on aerostat platform[C]//Papers of the 4th Annual Meeting of High Resolution Earth Observation. Beijing:Office of High Score and Major Special Management, Chinese Academy of Sciences, 2017.
[40] Mo S, Li B X. Study on the application of stratosphere emergency communication according to communication problems during wenchun eqrthquake[J]. Telecommunication Engineering, 2009, 49(5):29-32.
[41] 张雅丽, 喻忠义, 刘心, 等. 重大突发事件处置的应急通信响应机制研究[J]. 中国人民公安大学学报(自然科学版), 2013, 19(3):47-51. Zhang Yali, Yu Zhongyi, Liu Xin, et al. Research on emergency communication response mechanism for ma-jor emergency disposal[J]. Journal of People's Public Security University of China (Science & Technology), 2013, 19(3):47-51.
[42] 王海涛. 应急通信的发展现状和技术手段分析[J]. 中国无线电, 2011(11):49-51. Wang Haitao. Analysis on the development status and technical means of emergency communication[J]. China Radio, 2011(11):49-51.
[43] 中国电信系留式无人机高空基站应急通信抗震救灾应用市场化[EB/OL].[2019-01-31]. http://www.c114.com.cn/news/117/a1020597.html. Marketization of earthquake relief application of emergency communication in high-altitude base station of china telecom tethered UAV[EB/OL].[2019-01-31]. http://www.c114.com.cn/news/117/a1020597.html.
[44] 李政. 我国应急通信技术发展现状与展望[J]. 现代电信科技, 2011(1):44-47. Li Zheng. Emergency communication technology in China[J]. Modern Science & Technology of Telecommunications, 2011(1):44-47
[45] 郝昱文, 李晓雪, 赵喆, 等. 突发公共事件应急通信技术探讨[J]. 信息技术, 2016(4):84-87. Hao Yuwen, Li Xiaoxue, Zhao Zhe, et al. Summary of public incident emergency integrated space-ground command communication technology[J]. Information Technology, 2016(4):84-87.
[46] 李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析[J]. 装备学院学报, 2008, 19(2):61-65. Li Yiyong, Li Zhi, Shen Huairong. Analysis on development and application of near space vehicle[J]. Journal of the Academy of Equipment Command & Technology, 2008, 19(2):61-65.
[47] 何彦峰. 浅析临近空间平台的军事应用[J]. 国防科技, 2007(6):32-35. He Yanfeng. The military applications of the near-space platform[J]. National Defense Science & Technology, 2007(6):32-35.
[48] 赵亮, 董鹏署, 李宗亭, 等. 平流层飞艇载SIAR系统作战能力分析[J]. 舰船电子对抗, 2018, 41(1):42-44. Zhao Liang, Dong Pengshu, Li Zongting, et al. Analysis of operational capability of siar system in stratospheric airship[J]. Ship Electronic Countermeasure, 2008, 41(1):42-44.
[49] 杨维东, 杨凡德. 临近空间飞行器预警能力分析[J]. 装备学院学报, 2008, 19(2):57-60. Yang Weidong, Yang Fande. Early warning ability analysis for near space vehicle[J]. Journal of the Academy of Equipment Command & Technology, 2008, 19(2):57-60.
[50] 赵敏, 岳韶华, 贺正洪, 等. 未来临近空间防御作战研究[J]. 飞航导弹, 2017(2):10-14. Zhao Min, Yue Shaohua, He Zhenghong, et al. Research on the future near space defense warfare[J]. Flying Missiles, 2017(2):10-14.
[51] 舒首衡, 陈乐, 郑铮, 等. 临近空间激光通信信道特性及系统分析[J]. 电光与控制, 2008, 15(2):19-22. Shu Shouheng, Chen Le, Zheng Zheng, et al. Near space laser communication channel characteristics and system analysis[J]. Electric and Control, 2008, 15(2):19-22.
[52] 郭建国, 周军. 临近空间低动态飞行器控制研究综述[J]. 航空学报, 2014, 35(2):320-331. Guo Jianguo, Zhou Jun. A summary of research on control of low dynamic vehicle in nearby space[J]. Journal of Aeronautics, 2017, 35(2):320-331.
[53] 徐凯, 姚志刚, 韩志刚, 等. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1):66-74. Xu Kai, Yao Zhigang, Han Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Advances in Earth Science, 2017, 32(1):66-74.
[54] 黄宛宁. 看谷歌怎样一步步玩票做气球[J]. 金融博览, 2017(15):76-79. Huang Wanning. See how google play ticket make balloons step by step[J]. Financial View, 2017(15):76-79.
[55] Cathey H M. The NASA super pressure balloon-A path to flight[J]. Advnces in Space Research, 2009, 44(1):23-38.
[56] 程旋, 肖存英, 胡雄. 临近空间大气环境对高超声速飞行器气动特性的影响研究进展[J]. 飞航导弹, 2018(5):22-28. Chen Xuan, Xiao cunying, Hu Xiong. Research progress on aerodynamic characteristics of hypersonic vehicle under near space atmospheric environment[J]. Aerodynamic Missile, 2018(5):22-28.
[57] 王益平, 周飞, 徐明. 临近空间浮空器区域驻留控制策略研究[J]. 中国空间科学技术, 2018, 38(1):63-39. Wang Yiping, Zhou Fei, Xu Ming. Study on regional residence control strategy of nearby space floats[J]. China Space Science and Technology, 2018, 38(1):63-39.
[58] 薛永江, 李体方. 临近空间飞行器发展及关键技术分析[J]. 飞航导弹, 2011(2):32-36. Xue Yonghong, Li Tifang. Development and key technology analysis of nearby space vehhicle[J]. Flying Missile, 2011(2):32-36.
[59] 李智斌, 黄宛宁, 张钊. 2018年临近空间科学热点回眸[J]. 科技导报, 2019, 37(1):44-51. Li Zhibin, Huang Wanning, Zhang Zhao. Retrospect on the scientific hotspot of the 2018 years near space[J]. Scienc & Technology Review, 2019, 37(1):44-51.
Outlines

/