The evaluation of the national scientific research competitiveness is of great significance to determine the developmental direction of the national scientific research and to guide the development of universities and departments of the government. This paper uses a hybrid weighting method based on the data envelopment analysis (DEA) to measure the national scientific research competitiveness index of basic medical disciplines of OECD countries and analyses the competitiveness of different countries and their rankings. The results show that the United States, the United Kingdom, Germany, Japan and France have the highest competitiveness index among 28 OECD countries in the field of basic medical disciplines. In addition, the competitiveness of Finland, Greece, New Zealand and Portugal sees a great volatility, but the rest of the OECD countries are in a stable level. From a regional perspective, North America, Northern Europe and Western Europe have higher average scientific research competitiveness index, while Southern and Central Europe are on the low side. Therefore, OECD countries should strengthen their scientific research cooperation, learn from each other. OECD countries with low competitiveness should catch up with the countries with high competitiveness to promote a rapid development and to reach a balance in the regional science and education development.
SONG Yaoyao
,
LI Bi
,
WANG Xue
,
YANG Guoliang
. National scientific research competitiveness evaluation: A case study of basic medical disciplines in OECD countries[J]. Science & Technology Review, 2019
, 37(14)
: 34
-43
.
DOI: 10.3981/j.issn.1000-7857.2019.14.005
[1] 穆荣平, 樊永刚, 文皓. 中国创新发展:迈向世界科技强国之路[J]. 中国科学院院刊, 2017, 32(5):512-520.
[2] Saaty T L. The analytic hierarchy process:Planning, priority setting, resource allocation[M]. New York:McGraw Hill International Book Company, 1980.
[3] Saaty T L. Axiomatic foundation of the analytic hierarchy process[J]. Management Science, 1986, 32(7):841-855.
[4] 程文渊, 张葆晨, 吴洋, 等. 基于系统工程的航空专业科研竞争力评价指标体系研究[J]. 科研管理, 2016, 37(增刊1):449-453.
[5] 董月玲, 季淑娟. 我国高校学术竞争力的评价分析[J]. 科技管理研究, 2013, 33(4):116-120.
[6] Edwards W, Barron F H. SMARTS and SMARTER:Improved simple methods for multi-attribute utility measurements[J]. Organizational Behavior and Human Decision Processes, 1994, 60(3):306-325.
[7] Hwang C L, Yoon K. Multiple attribute decision making:Methods and applications[M]. Berlin:Springer-Verlag, 1981.
[8] Chen T Y, Li C H. Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis[J]. Applied Soft Computing, 2011, 11(8):5411-5423.
[9] 章凌云. 基于本征向量和TOPSIS的工程施工综合评标法研究[J]. 工程管理学报, 2013, 27(5):78-82.
[10] Jacquet-Lagrèze E, Siskos Y. Assessing a set of additive utility functions for multicriteria decision making:The UTA method[J]. European Journal of Operational Research, 1982, 10(2):151-164.
[11] Wang T C, Lee H D. Developing a fuzzy TOPSIS approach based on subjective weights and objective weights[J]. Expert Systems and Applications, 2009, 36(5):8980-8985.
[12] 郑学敏. 一种基于粗糙集理论的多指标综合评价方法[J]. 统计与决策, 2010(5):37-39.
[13] Ma J, Fan Z P, Huang L H. A subjective and objective integrated approach to determine attribute weights[J]. European Journal of Operational Research, 1999, 112(2):397-404.
[14] 孙文莺歌, 马路. 基于F1000数据库的医学高校科研竞争力评价[J]. 中华医学图书情报杂志, 2015, 24(10):60-64.
[15] 王敏, 项贤军, 夏伟, 等. 综合性医院科研绩效评价体系构建研究[J]. 经济研究导刊, 2016(29):155-157.
[16] Yang G L, Yang J B, Xu D L, et al. A three-stage hybrid approach for weight assignment in MADM[J]. Omega, 2017, 71:93-105.
[17] 杨多贵, 周志田, 宋瑶瑶, 等. 世界主要国家的国家凝聚力评价研究[J]. 中国科学院院刊, 2016, 31(11):1215-1223.
[18] Jolliffe I T. Principle component analysis[M]. New York:Springer-Verlag, 1986.
[19] 《中国基础研究竞争力分析》 课题组. 中国基础研究国际竞争力蓝皮书[R]. 北京:中国科学院文献情报中心, 2015.
[20] 岳超源. 决策理论与方法[M]. 北京:科学出版社, 2003:170-191.
[21] Yang G L, Shen W F, Zhang D Q, et al. Extended utility and DEA without explicit inputs[J]. Journal of the Operational Research Society, 2014, 65(8):1212-1220.
[22] Yang J B. Minimax reference point approach and its application for multiobjective optimisation[J]. European Journal of Operational Research, 2000, 126(3):90-105.