[1] Cameron M. World report on road traffic injury prevention[M]//World report on road traffic injury prevention. Geneva:World Health Organization, 2004:270-275.
[2] Kissi S, Fournier L, How N K. Road traffic accidents:A pictorial review[J]. Emergency Radiology, 2018, 25(4):425-433.
[3] Von H H, Al E. Reducing the severity of road injuries through post impact care[J]. European Journal of Emergency Medicine. 1999, 6:271-274.
[4] 杨惠敏, 陈雨人, 方守恩, 等. 高速公路交通事故救援时间与生存率关系模型研究[J]. 交通信息与安全, 2015(4):82-86. Yang Huimin, Chen Yuren, Fang Shouen, et al. A Study of the relationship between rescue time and survival rate of traffic accidents on freeways using a cox regression model[J]. Transport Information and Safety, 2015(4):82-86.
[5] 寒金. 美国高速公路管理革新[J]. 交通企业管理, 2006, 21(9):68-69. Han Jin. American highway management innovation[J]. Transportation Enterprise Management, 2006, 21(9):68-69.
[6] Haddon W. The changing approach to the epidemiology, prevention, and amelioration of trauma:The transition to approaches etiologically rather than descriptively based[J]. American Journal of Public Health and the Nations Health, 1968, 58(8):1431-1438.
[7] Leduc G. Road traffic data:Collection methods and applications[Z/OL]. Working Papers on Energy, Transport and Climate Change, 2008, https://www.researchgate.net/profile/Guillaume_Leduc2/publication/254424803_Road_Traffic_Data_Collection_Methods_and_Applications/links/55645bf008ae6f4dcc99951f.pdf.
[8] 邵春福, 赵熠, 吴戈. 道路交通数据采集技术研究展望[J]. 现代交通技术, 2006(6):66-70. Shao Chunfu, Zhao Yi, Wu Ge. Review of road traffic data collection technology[J]. Modern Transportation Technology, 2006(6):66-70.
[9] Sun Z, Bebis G, Miller R. On-road vehicle detection:A review[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(5):694-711.
[10] 赵英, 江龙, 王亚涛, 等. 视频大数据采集分析技术在高速路网安全畅通中的应用[J]. 中国交通信息化, 2017(增刊1):143-147. Zhao Ying, Jiang Long, Wang Yatao, et al. Application of video big data acquisition and analysis technology in safety and unblocked of highway network[J]. China ITS Journal, 2017(Suppl 1):143-147.
[11] 张敬磊, 王晓原. 交通事件检测算法研究进展[J]. 武汉理工大学学报(交通科学与工程版), 2005, 29(2):215-218. Zhang Jinglei, Wang Xiaoyuan. Research progress of traffic incident detection algorithms[J]. Wuhan University of Technology (Transportation Science & Engineering), 2005, 29(2):215-218.
[12] Dogru N, Subasi A. Traffic accident detection by using machine learning methods[C/OL]. International Symposium on Sustainable Development, 2012, https://www.researchgate.net/publication/288511790_TRAFFIC_ACCIDENT_DETECTION_BY_USING_MACHINE_LEARNING_METHODS.
[13] 武林芝, 陈淑燕, 郑小花. 基于PCA和SVM的交通事件自动检测算法[J]. 微计算机信息, 2010, 26(13):220-222. Wu Linzhi, Chen Shuyan, Zheng Xiaohua. Automatic incident detection algorithm based on PCA and SVM[J]. Microcomputer Information, 2010, 26(13):220-222.
[14] Liu C, Lu J, Chen S Y. Yesign and analysis of traffic incident detection based on random forest[J]. Journal of Southeast University (English Edition), 2014(1):88-95.
[15] 姜紫峰, 刘小坤. 基于神经网络的交通事件检测算法[J]. 长安大学学报(自然科学版), 2000, 20(3):67-69. Jiang Zifeng, Liu Xiaokun. Artificial neural network(ANN) algorithm for traffic incidents detection[J]. Journal of Chang'an University (Natural Science Edition), 2000, 20(3):67-69.
[16] Gupte S, Masoud O, Martin R F K, et al. Detection and classification of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1):37-47.
[17] Cheng H Y, Jeng B S, Tseng P T, et al. Lane detection with moving vehicles in the traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4):571-582.
[18] Karmann K P. Moving object recognition using an adaptive background memory[J]. Time-Varying Image Processing and Moving Object Recognition, 1990, 2:289-296.
[19] Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video[C]//IEEE Workshop on Applications of Computer Vision. Piscataway, NJ:IEEE, 1998:8-14.
[20] 王潮, 宣国荣. 基于计算机视觉的实时交通流检测[J]. 计算机工程, 1997(增刊1):276-278. Wang Chao, Xuan Guorong. Real-time traffic flow detection based on computer vision[J]. Computer Engineering, 1997(suppl 1):276-278.
[21] 彭甜. 三个关键检测技术:目标检测、目标跟踪和多摄像头协同[D]. 上海:上海交通大学, 2010. Peng Tian. Three key technologies:Target detecting, multi-targets tracking and multi-cameras coordination[D]. Shanghai Jiao Tong University, 2010.
[22] 刘安安, 苏育挺. 跨摄像头的多运动目标跟踪方法:102156863 B[P]. 2011-08-17. Liu Anan, Sun Yuting. Multi-moving target tracking method across cameras:102156863 B[P]. 2012-08-17.
[23] Beymer D, Mclauchlan P, Coifman B, et al. A real-time computer vision system for measuring traffic parameters[C]. Proceedings of IEEE Computer Society Computer Vision & Pattern Recognition, 1997:495-501.
[24] Buch N, Velastin S A, Orwell J. A review of computer vision techniques for the analysis of urban traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3):920-939.
[25] Hu W M, Xiao X J, Xie D, et al. Traffic accident prediction using 3-D model-based vehicle tracking[J]. IEEE Transactions on Vehicular Technology, 2004, 53(3):677-694.
[26] 罗浩. 基于深度学习的行人重识别研究综述[EB/OL]. (2017-12-10)[2018-9-12]. https://blog.csdn.net/baidu_18891025/article/details/79202249. Luo Hao. Review of pedestrian recognition based on deep learning[EB/OL]. (2017-12-10)[2018-9-12]. https://blog.csdn.net/baidu_18891025/article/details/79202249.
[27] Zapletal D, Herout A. Vehicle re-identification for automatic video traffic surveillance[C]//Computer Vision and Pattern Recognition Workshops. Piscataway, New Jencey:IEEE, 2016:1568-1574.
[28] Liu X C, Liu W, Mei T, et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance[C]//European Conference on Computer Vision. Cham:Springer, 2016:869-884.
[29] Zhou Y, Shao L. Vehicle re-identification by adversarial bidirectional LSTM network[C]//IEEE Winter Conference on Applications of Computer Vision. Piscataway, New Jencey:IEEE, 2018:653-662.
[30] 自动驾驶计算机视觉研究综述:难题、数据集与前沿成果[EB/OL]. (2017-09-13)[2018-9-12]. http://www.sohu.com/a/191792533_465591. Research summary of computer vision for autonomous vehicle:Difficulties, data sets and forefront achievements[EB/OL]. (2017-09-13)[2018-9-12]. http://www.sohu.com/a/191792533_465591.
[31] "十三五"末全国高速公路通车里程将达16.9万公里[EB/OL]. (2016-04-15)[2018-09-02]. http://finance.sina.com.cn/roll/2016-04-15/doc-ifxrizpp1181339.shtml. By the end of the 13th Five-Year Plan, the mileage of national expressway will reach 169,000 kilometers[EB/OL]. (2016-04-15)[2018-09-02]. http://finance.sina.com.cn/roll/2016-04-15/doc-ifxrizpp1181339.shtml.
[32] 何明. 智能交通基于视频、图像的大数据分析应用[J]. 智能城市, 2016(10):112. He Ming. Big data analysis and application of intelligent transportation based on video and image[J]. Intelligent City, 2016(10):112.
[33] 何志涛, 田铁红, 孙世臻, 等. 基于大数据技术的视频监控应用研究与探索[J]. 数字技术与应用, 2017(1):95-96. He Zhitao, Tian Tiehong, Sun Shizhen, et al. Research and application of video surveillance based on big data technology[J]. Digital Technology & Application,2017(1):95-96.
[34] 赵英. 智慧城市与视频大数据[M]. 北京:科学出版社, 2018:86. Zhao Ying. Smart city and video big data[M]. Beijing:Science Press, 2018:86.
[35] 黄海军. 浅谈安防大数据的应用[J]. 中国安防, 2016(5):60-62. Huang Haijun. Talking about the application of big security data[J]. China Security & Protection, 2016(5):60-62.
[36] 何遥. 安防大数据的发展趋势[J]. 中国公共安全, 2015(22):84-86. He Yao. Development trend of security big data[J]. China Public Security, 2015(22):84-86.
[37] 赵晟, 姜进磊. 典型大数据计算框架分析[J]. 中兴通讯技术, 2016, 22(2):14-18. Zhao Sheng, Jiang Jinlei. Analysis of typical big data computing framework[J]. ZTE Technology Journal, 2016, 22(2):14-18.
[38] 海康视频云存储介绍[EB/OL]. (2014-9-11)[2017-11-25]. https://wenku.baidu.com/view/a6c4c841a300a6c30d229f0f.html. Haikang video cloud storage introduce[EB/OL]. (2014-9-11)[2017-11-25]. https://wenku.baidu.com/view/a6c4c841a300a6c30d229f0f.html.
[39] 舒文琼. 大视频元年已来服务质量评估需同步跟进[J]. 通信世界, 2016(30):30. Shu Wenqiong. Big video year has come, service quality assessment needs to be followed up synchronously[J]. Telecom World, 2016(30):30.
[40] 韩怿冰, 宋文军, 尚展垒. 云存储环境下的用户数据安全机制研究[J]. 网络安全技术与应用, 2016(4):63-64. Han Yibing, Song Wenjun, Shang Zhanlei. Research on user data security mechanism in cloud storage environmen[J]. Practical Network Security Technology, 2016(4):63-64.
[41] Bertozzi M, Broggi A. GOLD:a parallel real-time stereo vision system for generic obstacle and lane detection[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 1998, 7(1):62.