Exclusive: Science and Technology Review in 2018

Seven hot research topics in thermal metamaterials in 2018

  • HUANG Jiping
Expand
  • Department of Physics, Fudan University, Shanghai 200438, China

Received date: 2018-12-30

  Revised date: 2019-01-02

  Online published: 2019-01-29

Abstract

This paper reviews the overall research and development of thermal metametraials in terms of thermal conduction, convection and radiation in 2018. We summarize in particular seven research topics, which are (1) efficient manipulation of thermal conduction by using structured surfaces, (2) theoretical establishment and application exploration of inhomogeneous thermal structure, (3) thermal cloak with thermal near-zero-index-materials, (4) establishment of transformation thermal convection theory, (5) abnormal phenomena of thermal convection, (6) thermal radiation:energy collection from the sun and the outer space, and (7) application design and integration development of thermal metamaterials. All these topics are related not only to fundamental research but also to application development.

Cite this article

HUANG Jiping . Seven hot research topics in thermal metamaterials in 2018[J]. Science & Technology Review, 2019 , 37(1) : 99 -105 . DOI: 10.3981/j.issn.1000-7857.2019.01.010

References

[1] Li Y, Bai X, Yang T Z, et al. Structured thermal surface for radiative camouflage[J]. Nature Communications, 2018, 9(1):273.
[2] Hu R, Zhou S L, Li Y, et al. Illusion thermotics[J]. Advanced Materials, 2018, 30(22):1707237.
[3] Hu R, Huang S Y, Wang M, et al. Binary thermal encoding by energy shielding and harvesting units[J]. Physical Review Applied, 2018, 10(5):054032.
[4] Xu L J, Yang S, Huang J P. Thermal theory for heterogeneously architected structure:Fundamentals and application[J]. Physical Review E, 2018, 98(5):052128.
[5] Xu L J, Huang J P. A transformation theory for camouflaging arbitrary heat sources[J]. Physics Letters A, 2018, 382(46):3313.
[6] Xu L J, Jiang C R, Huang J P. Heat-source transformation thermotics:From boundary-independent conduction to all-directional replication[J]. European Physical Journal B, 2018, 91(7):166.
[7] Xu L J, Wang R Z, Huang J P. Camouflage thermotics:A cavity without disturbing heat signatures outside[J]. Journal of Applied Physics, 2018, 123(24):245111.
[8] Li Y, Zhu K J, Peng Y G, et al. Thermal meta-device in analogue of zero-index photonics[J]. Nature Materials, 2019, 18:48-54.
[9] Han T C, Yang P, Li Y, et al. Full-parameter omnidirectional thermal metadevices of anisotropic geometry[J]. Advanced Materials, 2018, 30(49):1804019.
[10] Dai G L, Shang J, Huang J P. Theory of transformation thermal convection for creeping flow in porous media:Cloaking, concentrating, and camouflage[J]. Physical Review E, 2018, 97(2):022129.
[11] Dai G L, Huang J P. A transient regime for transforming thermal convection:Cloaking, concentrating and rotating creeping flow and heat flux[J]. Journal of Applied Physics 2018, 124(23):235103.
[12] Wang B, Shih T M, Tian B, et al. Mildly zigzag heat transfer affected by aspect ratios for recirculating flows in rectangular enclosures[J]. International Journal of Heat and Mass Transfer, 2017, 107:372-378.
[13] Wang B, Shih T M, Chen X W, Chang R R G, Wu C X. Cascade-like and cyclic heat transfer characteristics affected by enclosure aspect ratios for low Prandtl numbers[J]. International Journal of Heat and Mass Transfer, 2018, 124:131-140.
[14] Wang B, Shih T M, Chen X W, et al. Anomalous cooling during transient heating processes[J]. International Journal of Heat and Mass Transfer, 2018, 127:1253-1262.
[15] Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528):540-544.
[16] Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329):1062-1066.
[17] Chen Z, Zhu L X, Li W, et al. Simultaneously and synergistically harvest energy from the sun and outer space[J]. Joule, 2018, 3:1.
[18] Ghashami M, Geng H Y, Kim T, et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients[J]. Physical Review Letters, 2018, 120(17):175901.
[19] Dede E M, Zhou F, Schmalenberg P, et al. Thermal metamaterials for heat flow control in electronics[J]. Journal of Electronic Packaging, 2018, 140(1):010904.
[20] Dede E M, Schmalenberg P, Nomura T, et al. Design of anisotropic thermal conductivity in multilayer printed circuit boards[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(12):1763-1774.
[21] Guo J, Qu Z G. Thermal cloak with adaptive heat source to proactively manipulate temperature field in heat conduction process[J]. International Journal of Heat and Mass Transfer, 2018, 127:1212-1222.
[22] Dai G L, Shang J, Wang R Z, et al. Nonlinear thermotics:Nonlinearity enhancement and harmonic generation in thermal metasurfaces[J]. The European Physical Journal B, 2018, 91(3):59.
[23] 黄吉平. 热超构材料十年简史[J]. 物理, 2018, 47(11):685-694. Huang Jiping. A brief history of ten years of thermal metamaterials[J]. Physics, 2018, 47(11):685-694.
[24] Fan C Z, Gao Y, Huang J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25):251907.
[25] Chen T Y, Weng C N, Chen J S. Cloak for curvilinearly anisotropic media in conduction[J]. Applied Physics Letters, 2008, 93(11):114103.
[26] Guenneau S, Amra C, Veynante D. Transformation thermodynamics:Cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7):8207-8218.
[27] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21):214303.
[28] Maldovan M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475):209-217.
Outlines

/