[1] Fujimoto K, Karuppuchamy T, Takemura N, et al. A new subset of CD103+CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity[J]. Journal of Immunology, 2011, 186(11):6287-6295.
[2] Liu C H, Liu H, Ge B. Innate immunity in tuberculosis:host defense vs pathogen evasion[J]. Cellular & Molecular Immunology, 2017, 14(12):963-975.
[3] Le Bon A, Schiavoni G, D'Agostino G, et al. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo[J]. Immunity, 2001, 14(4):461-470.
[4] Doehle B P, Hladik F, McNevin J P, et al. Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells[J]. Journal of Virology, 2009, 83(20):10395-10405.
[5] Koerner I, Kochs G, Kalinke U, et al. Protective role of beta interferon in host defense against influenza A virus[J]. Journal of Virology, 2007, 81(4):2025-2030.
[6] Yoo J K, Baker D P, Fish E N. Interferon-β modulates type 1 immunity during influenza virus infection[J]. Antiviral Research, 2010, 88(1):64-71.
[7] Parker D, Martin F J, Soong G, et al. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract[J]. MBio, 2011, 2(3):e00016-11.
[8] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis[J]. Cell, 2004, 118(2):229-241.
[9] McFarland A P, Savan R, Wagage S, et al. Localized delivery of interferon-beta by Lactobacillus exacerbates experimental colitis[J]. PLoS One, 2011, 6(2):e16967.
[10] Weiss G, Rasmussen S, Zeuthen L H, et al. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism[J]. Immunology, 2010, 131(2):268-281.
[11] Mirpuri J, Brazil J C, Berardinelli A J, et al. Commensal Escherichia coli reduces epithelial apoptosis through IFN-alphaAmediated induction of guanylate binding protein-1 in human and murine models of developing intestine[J]. Journal of Immunology, 2010, 184(12):7186-7195.
[12] Svensson A, Bellner L, Magnusson M, et al. Role of IFN-alpha/beta signaling in the prevention of genital herpes virus type 2 infection[J]. Journal of Reproductive Immunology, 2007, 74(1-2):114-123.
[13] Härle P, Noisakran S, Carr D J. The application of a plasmid DNA encoding IFN-alpha 1 postinfection enhances cumulative survival of herpes simplex virus type 2 vaginally infected mice[J]. Journal of Immunology, 2001, 166(3):1803-1812.
[14] Austin B A, James C M, Härle P, et al. Direct application of plasmid DNA containing type I interferon transgenes to vaginal mucosa inhibits HSV-2 mediated mortality[J]. Biological Procedures Online, 2006, 8:55-62.
[15] Diaz-San Segundo F, Moraes M P, de Los Santos T, et al. Interferon-induced protection against foot-and-mouth disease virus infection correlates with enhanced tissue-specific innate immune cell infiltration and interferon-stimulated gene expression[J]. Journal of Virology, 2010, 84(4):2063-2077.
[16] Yao Q, Qian P, Cao Y, et al. Synergistic inhibition of pseudorabies virus replication by porcine alpha/beta interferon and gamma interferon in vitro[J]. European Cytokine Network, 2007, 18(2):71-77.
[17] Kim S M, Park J H, Lee K N, et al. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs[J]. Journal of Virology, 2015, 89(16):8267-8279.
[18] Baumann A, McCullough K C, Summerfield A. Porcine circovirus type 2 stimulates plasmacytoid dendritic cells in the presence of IFN-gamma[J]. Veterinary Immunology and Immunopathology, 2013, 156(3-4):223-228.
[19] Vandenbroeck K, Nauwynck H, Vanderpooten A, et al. Recombinant porcine IFN-gamma potentiates the secondary IgG and IgA responses to an inactivated suid herpesvirus-1 vaccine and reduces postchallenge weight loss and fever in pigs[J]. Journal of Interferon and Cytokine Research, 1998, 18(9):739-744.
[20] Li L, Fu F, Xue M, et al. IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha[J]. Antiviral Research, 2017,140:76-82.
[21] Du L, Li B, He K, et al. Construction and immunogenicity of DNA vaccines encoding fusion protein of porcine IFN-λ 1 and GP5 gene of porcine reproductive and respiratory syndrome virus[J]. Biomed Research International, 2013, 2013:318698.
[22] Schoggins J W, Wilson S J, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response[J]. Nature, 2011, 472(7344):481-485.
[23] Biron CA. Interferons alpha and beta as immune regulators-a new look[J]. Immunity, 2001, 14(6):661-664.
[24] Santini S M, Lapenta C, Logozzi M, et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice[J]. Journal of Experimental Medicine, 2000, 191(10):1777-1788.
[25] McBride S, Hoebe K, Georgel P, et al. Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN[J]. Journal of Immunology, 2006, 177(9):6122-6128.
[26] Braun D, Caramalho I, Demengeot J. IFN-alpha/beta enhances BCR-dependent B cell responses[J]. International Immunology, 2002, 14(4):411-419.
[27] Mangan N E, Fung K Y. Type I interferons in regulation of mucosal immunity[J]. Immunology and Cell Biology, 2012, 90(5):510-519.
[28] Mamber S W, Lins J, Gurel V, et al. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle[J]. Veterinary Immunology and Immunopathology, 2016, 172:64-71.
[29] Beaurepaire C, Smyth D, McKay D M. Interferon-gamma regulation of intestinal epithelial permeability[J]. Journal of Interferon and Cytokine Research, 2009, 29(3):133-144.
[30] Kotenko S V, Gallagher G, Baurin V V, et al. IFN-lambdas mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex[J]. Nature Immunology, 2003, 4(1):583-590.
[31] Schindler C, Plumlee C. Inteferons pen the JAK-STAT pathway[J]. Seminars in Cell & Developmental Biology, 2008, 19(4):311-318.
[32] Samarajiwa S A, Forster S, Auchettl K, et al. INTERFEROME:the database of interferon regulated genes[J]. Nucleic Acids Research, 2009, 37(Database issue):D852-857.
[33] Sommereyns C, Paul S, Staeheli P, et al. IFN-lambda (IFNlambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo[J]. PLoS Pathogens, 2008, 4(3):e1000017.
[34] Zanoni I, Granucci F, Broggi A. Interferon (IFN)-lambda Takes the Helm:Immunomodulatory Roles of Type Ⅲ IFNs[J]. Frontiers in Immunology, 2017, 8:1661.
[35] Baldridge M T, Lee S, Brown J J, et al. Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus[J]. Journal of Virology, 2017, pii:e02079-16.
[36] Zhang Q, Ke H, Blikslager A, et al. Type Ⅲ Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling[J]. Journal of Virology, 2018, pii:e01677-17.
[37] Blazek K, Eames H L, Weiss M, et al. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production[J]. journal of experimental medicine, 2015, 212(6):845-853.
[38] Chrysanthopoulou A, Kambas K, Stakos D, et al. Interferon lambda1/IL-29 and inorganic polyphosphate are novel regulators of neutrophil-driven thromboinflammation[J]. Journal of Pathology, 2017, 243(1):111-122.
[39] Galani I E, Triantafyllia V, Eleminiadou E E, et al. Interferonlambda Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness[J]. Immunity, 2017, 46(5):875-890.
[40] Broggi A, Tan Y, Granucci F, et al. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function[J]. Nature Immunology, 2017, 18(10):1084-1093.
[41] Wang Y, Li T, Chen Y, et al. Involvement of NK Cells in IL-28B-Mediated Immunity against Influenza Virus Infection[J]. Journal of Immunology, 2017, 199(3):1012-1020.
[42] Bracci L, Canini I, Puzelli S, et al. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level[J]. Vaccine, 2005, 23(23):p. 2994-3004.
[43] Cao M, Sasaki O, Yamada A, et al. Enhancement of the protective effect of inactivated influenza virus vaccine by cytokines[J]. Vaccine, 1992, 10(4):238-242.
[44] Holmgren J, Czerkinsky C, Eriksson K, et al. Mucosal immunisation and adjuvants:a brief overview of recent advances and challenges[J]. Vaccine, 2003, 21 Suppl 2:S89-95.
[45] Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland[J]. New England Journal of Medicine, 2004, 350(9):896-903.