Exclusive

Physics-based modeling and simulation in VR and their applications in agricultural information technologies

  • QIN Hong ,
  • XIAO Boxiang
Expand
  • 1. Computer Science Department, Stony Brook University, New York 11733, US;
    2. Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China;
    3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China;
    4. Beijing Key Lab of Digital Plant, Beijing 100097, China

Received date: 2017-11-08

  Revised date: 2018-05-09

  Online published: 2018-06-15

Abstract

Virtual reality has become more important in the field of information technologies of modern agriculture,However, static geometric modeling predominate current VR applications, and dynamic models and interactions of real physical meanings or induced by real world physical rules have yet not been popularized. Because of the advantages by its nature. physics-based models and simulation an promote the reality of natural environment modeling, such as dynamic modeling of animals, plants, production scenes in agriculture, and enhance immersion of interactions in virtual reality. Based on the concept of virtual plant and digital plant, this paper introduces the innate character and significance of the physics-based method. Furthermore, the paper systematically summarizes the research developments of physics-based models and simulations in agricultural virtual reality environment, and analyzes application principles and common algorithms in morphology, kinematics, dynamics, biomechanics and modeling of environmental physical field. Finally, the possible effects and developing trends are discussed.

Cite this article

QIN Hong , XIAO Boxiang . Physics-based modeling and simulation in VR and their applications in agricultural information technologies[J]. Science & Technology Review, 2018 , 36(11) : 82 -94 . DOI: 10.3981/j.issn.1000-7857.2018.11.008

References

[1] 孙九林. 农业信息工程的理论、方法和应用[J]. 中国工程科学, 2000, 2(3):87-91. Sun Jiulin. The theory, methodology and application of agricultural information engineering[J]. Engineering Science, 2000, 2(3):87-91.
[2] 赵春江. 我国数字农业技术发展战略与主要研究进展[C]//2004年中国作物学会学术年会. 武汉:中国作物学会, 2004:7-11. Zhao Chunjiang. Development and Advances of Digital Agriculture in China[C]//Annual Conference of Crop Science Society of China, Wuhan:The Cropscience Society of China, 2004:7-11.
[3] 李保国, 刘忠. 数字农业与农业信息化发展的现状与趋势[C]//2005年中国数字农业与农村信息化学术研究研讨会. 北京:中国农业出版社, 2005:14-18. Li Baoguo, Liu Zhong. Development and trends of digital agriculture and information[C]//Conference on Digital Agriculture and Rural Informatization in China. Beijing:China Agriculture Press, 2005:14-18.
[4] 曹宏鑫, 赵锁劳, 葛道阔, 等. 农业模型与数字农业发展探讨[J]. 江苏农业学报, 2012, 28(5):1181-1188. Cao Hongxin, Zhao Suolao, Ge Daokuo, et al. Discussion on development of agricultural models and digital agriculture[J]. Ji-angsu Journal of Agriculture Science, 2012, 28(5):1181-1188.
[5] 赵春江, 陆声链, 郭新宇, 等. 数字植物及其技术体系探讨[J]. 中国农业科学, 2009, 43(10):2023-2030. Zhao Chunjiang, Lu Shenglian, Guo Xinyu, et al. Exploration of digital plant and its technology system[J]. Scientia Agricultura Sinica, 2009, 43(10):2023-2030.
[6] 杨国才. 虚拟农业体系结构的研究[J]. 计算机科学, 2005, 32(3):125-126. Yang Guocai. Researeh on architecture of virtual agrieulture[J]. Computer Science, 2005, 32(3):125-126.
[7] 贾科利, 常庆瑞, 张俊华, 等. 信息农业现状与发展趋势[J]. 西北农林科技大学学报(社会科学版), 2003, 3(6):13-17. Jia Keli, Chang Qingrui, Zhang Junhua, et al. The developmental trend and status of information agriculture[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Social Science Edition), 2003, 3(6):13-17.
[8] 周国民. 数字农业综述[J]. 农业图书情报学刊, 2004, 15(3):5-6, 17. Zhou Guomin. Review on digital agriculture[J]. Journal of Library and Information Sciences in Agriculture, 2004, 15(3):5-6, 17.
[9] 张卫星, 朱德峰, 赵致, 等. 虚拟现实技术与虚拟农业[J]. 贵州农业科学, 2006, 34(2):115-118. Zhang Weixing, Zhu Defeng, Zhao Zhi, et al. A brief review of virtual reality technology and virtual agriculture[J]. Guizhou Agricultural Sciences, 2006, 34(2):115-118.
[10] 毛竞, 关欣, 李巧云. 我国数字农业发展现状与发展趋势[J]. 广东农业科学, 2007, 12:126-128. Mao Jing, Guan Xin, Li Qiaoyun. Development and trends of digital agriculture in China[J]. Guangdong Agriculture Acience, 2007, 12:126-128.
[11] 王一鸣. 数字农业与数字农业工程技术的现状与发展[J]. 农业工程学报, 2003, 19(增刊1):9-10. Wang Yiming. Situation and development of digital agriculture and digital agriculture engineering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(Suppl 1):9-10.
[12] 陈洪, 马钦, 朱德海. 基于unity3d的交互式虚拟农业仿真平台研究[J]. 农机化研究, 2012, 34(3):184-186. Chen Hong, Ma Qin, Zhu Dehai. Research of interactive virtual agriculture simulation platform based on unity3d[J]. Journal of Agricultural Mechanization Research, 2012, 34(3):184-186.
[13] 滕光辉, 周春林. 虚拟现实技术在温室中的应用[J]. 农业工程学报, 2003, 19(4):254-258. Teng Guanghui, Zhou Chunlin. Application of virtual reality technology in the greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4):254-258.
[14] 赵春江, 陆声链, 郭新宇, 等. 数字植物研究进展:植物形态结构三维数字化[J]. 中国农业科学, 2015, 48(17):3415-3428. Zhao Chunjiang, Lu Shenglian, Guo Xinyu, et al. Advances in research of digital plant:3D digitization of plant morphological structure[J]. Scientia Agricultura Sinica, 2015, 48(17):3415-3428.
[15] 肖伯祥, 郭新宇, 陆声链, 等.植物三维形态虚拟仿真技术体系研究[J]. 应用基础与工程科学学报, 2012, 20(4):539-551. Xiao Boxiang, Guo Xinyu, Lu Shenglian, et al. Research in technological framework of 3D morphological virtual simulation of plant[J]. Journal of Basic Science and Engineering, 2012, 20(4):539-551.
[16] 赵沁平. 虚拟现实综述[J]. 中国科学(信息科学), 2009, 39(1):2-46. Zhao Qinping. A survey on virtual reality[J]. Science in China Series F(Information Sciences), 2009, 39(1):2-46.
[17] 赵沁平, 周彬, 李甲, 等. 虚拟现实技术研究进展[J]. 科技导报, 2016, 34(14):71-75. Zhao Qinping, Zhou Bin, Li Jia, et al. A brief survey on virtual reality technology[J]. Science & Technology Review, 2016, 34(14):71-75.
[18] 郭小虎, 秦洪. 适用于可变形体物理建模与模拟的无网格方法[J]. 中国科学(信息科学), 2009, 39(1):47-60. Guo Xiaohu, Qin Hong. Meshless methods for physics-based modeling and simulation of deformable models[J]. Science in China (Information Sciences), 2009, 39(1):47-60.
[19] Wang S F, Hou T B, Su Z X, et al. Multi-scale anisotropic heat diffusion based on normal-driven shape representation[J]. The Visual Computer, 2011, 27(6-8):429-439.
[20] Pan J J, Zhao C K, Zhao X, et al. Metaballs-based physical modeling and deformation of organs for virtual surgery[J]. The Visual Computer, 2015, 31(6-8):947-957.
[21] 谭捷, 杨旭波. 基于物理的流体动画综述[J]. 中国科学(信息科学), 2009, 39(5):499-514. Tan Jie, Yang Xubo. Physically-based fluid animation:A survey[J]. Science in China (Information Sciences), 2009, 39(5):499-514.
[22] 张凤军, 戴国忠, 彭晓兰.虚拟现实的人机交互综述[J].中国科学(信息科学), 2016, 46(12):1711-1736. Zhang Fengjun, Dai Zhongguo, Peng Xiaolan. Survey on human-computer interaction in virtual reality[J]. Science in China (Information Sciences), 2016, 46(12):1711-1736.
[23] 曹煊. 虚拟现实的技术瓶颈[J]. 科技导报, 2016, 34(15):94-103. Cao Xuan. Technological bottleneck of virtual reality[J]. Science & Technology Review, 2016, 34(15):94-103.
[24] Lindenmayer A. Mathematical models for cellular interaction in development, Parts I and Ⅱ[J]. Journal of Theoretical Biology, 1968, 18(3):280-315.
[25] Prusinkiewicz P. Modeling of spatial structure and development of plants:A review[J]. Scientia Horticulturae, 1998, 74(1-2):113-149.
[26] 李保国, 郭焱. 作物生长的模拟研究[J]. 科技导报, 1997, 15(7):11-12. Li Baoguo, Guo Yan. Simulated research on the plant growth[J]. Science & Technology Review, 1997, 15(7):11-12.
[27] 郭焱, 李保国. 虚拟植物的研究进展[J]. 科学通报, 2001, 46(4):273-280. Guo Yan, Li Baoguo. New advances in virtual plant research[J]. Science Bulletin, 2001, 46(4):273-280.
[28] 胡包钢, 赵星, 严红平, 等. 植物生长建模与可视化-回顾与展望[J]. 自动化学报, 2001, 27(6):816-835. Hu Baogang, Zhao Xing, Yan Hongping, et al. Plant growth modeling and visualization:Review and perspective[J]. Acta Automatica Sinica, 2001, 27(6):816-835.
[29] 侯加林, 王一鸣, 董乔雪, 等. 虚拟植物生长的研究现状与发展趋势[J]. 农业机械学报, 2004, 35(3):159-163. Hou Jialin, Wang Yiming, Dong Qiaoxue, et al. Research and development of virtual plant technique[J]. Transactions of The Chinese Society of Agricultural Machinery, 2004, 35(3):159-163.
[30] 戴小鹏, 黄璜. 虚拟现实实验中虚拟植物的建模[J]. 计算机工程, 2007, 33(23):215-217, 242. Dai Xiaopeng, Huang Huang. Virtual plants modeling in virtual reality lab[J]. Computer Engineering, 2007, 33(23):215-217, 242.
[31] Rutzinger M, Pratihast A K, Oude Elberink S, et al. Detection and modeling of 3D trees from mobile laser scanning data[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Commission V Symposium, Newcastle upon Tyne, UK:International Society for Photogrammetry and Remote Sensing. 2010, 520-525.
[32] Guo Y, Ma Y, Zhan Z, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize[J]. Annals of Botany, 2006, 97(2):217-230.
[33] Boudon F, Pradal C, Cokelaer T, et al. L-Py:An L-system simulation framework for modeling plant architecture development based on a dynamic language[J]. Frontiers in Plant Science, 2012, 3(4):76.
[34] 康孟珍. 植物功能结构模型研究的回顾与展望[J]. 系统仿真学报, 2012, 24(10):2039-2048. Kang Mengzhen. Review and perspectives on research about functional-structural plant models[J]. Journal of System Simulation, 2012, 24(10):2039-2048.
[35] Xiao B, Guo X, Du X, et al. An interactive digital design system for corn modeling[J]. Mathematical and Computer Modelling, 2010, 51(11):1383-1389.
[36] Xiao B X, Guo X Y, Zhao C J, et al. Interactive animation system for virtual maize dynamic simulation[J]. IET Software, 2013, 7(5):249-257.
[37] Anastacio F, Prusinkiewicz P, Sousa M C. Sketch-based parameterization of L-systems using Illustration-inspired construction lines[C]//Sketch Based Interfaces & Modeling, Annecy, France:Eurographics Association 2008, 33(4):119-126.
[38] 马伟, 项波, 查红彬, 等. 基于测量数据的植物建模[J]. 中国科学(信息科学), 2009, 39(1):134-144. Ma Wei, Xiang Bo, Zha Hongbin, et al. Modeling plants with sensor data[J]. Science in China (Information Sciences), 2009, 39(1):134-144.
[39] Xiao B X, Guo X Y, Zhao C J. An approach of mocap datadriven animation for virtual plant[J]. IETE Journal of Research, 2013, 59(3):258-263.
[40] Quan L, Tan P, Zeng G, et al. Image-based plant modeling[J]. ACM Transactions on Graphics, 2006, 25(3):599-604.
[41] Du J J, Zhang Y, Guo X Y, et al. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning[J]. Functional Plant Biology, 2016, 44(1):10-22.
[42] Barzel R, Barr A. A modeling system based on dynamic constraints[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques, Atlanta, Georgia:ACM New York, 1988, 22(4):179-188.
[43] Müller M, Heidelberger B, Hennix M, et al. Position based dynamics[J]. Journal of Visual Communication and Image Representation, 2007, 18(2):109-117.
[44] Qin H. Physics-based geometric design[J]. International Journal of Shape Modeling, 1996, 2(2-3):139-188.
[45] Qin H, Demitri T. D-NURBS:A physics-based geometric design framework[J]. IEEE Transactions on Visualization and Computer Graphics, 1996, 2(1):85-96.
[46] Qin H. Physics-based modeling framework for graphics, computer-aided design, and visualization[C]//In Proceedings of International Symposium on Computing and Microelectronics Technologies, Beijing:Peking University Press 1998:250-267.
[47] McDonnell Kevin T, Qin H. Dynamic sculpting and animation of free-form subdivision solids[C]//In Proceedings of IEEE Computer Animation 2000, Philadelphia:IEEE Computer Society, 2000:126-133.
[48] Du H X, Qin H. Dynamic PDE surfaces with flexible and general geometric constraints[C]//In Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2000), Hong Kong:IEEE Computer Society 2000, 213-222.
[49] Du H X, Qin H. Direct manipulation and interactive sculpting of PDE surfaces[J]. Computer Graphics Forum, 2000, 19(3):C261-C270.
[50] Zhang M J, Qin H. Hierarchical D-NURBS surfaces and their physics-based sculpting[C]//In Proceedings of International Conference on Shape Modelling and Applications (SMI 2001), Genova:IEEE Computer Society, 2001, 257-266.
[51] McDonnell Kevin T, Qin H. FEM-based subdivision solids for dynamic and haptic interaction[C]//In Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, Michigan:ACM New York, 2001:312-313.
[52] Du H X, Qin H. Integrating physics-based modeling with PDE solids for geometric design[C]//In Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2001), Tokyo:IEEE Computer Society, 2001, 198-209.
[53] Xie H, Qin H. A physics-based framework for subdivision surface design with automatic rules control[C]//In Proceedings of the Tenth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2002), Beijing:IEEE Computer Society, 2002:304-315.
[54] Du H X, Qin H. Interactive shape design using volumetric implicit PDEs[C]//Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (SM'03), Seattle, Washington:ACM New York, 2003:235-246.
[55] Duan Y, Yang L, Qin H. et al. Shape reconstruction from 3D and 2D data using PDE-based deformable surfaces[C]//Proceedings of The 8th European Conference on Computer Vision (Computer Vision-ECCV 2004), Part Ⅲ, Prague, Czech Republic:Springer, 2004:238-251.
[56] Duan Y, Hua J, Qin H. HapticFlow:PDE-based mesh editing with haptics[J]. Computer Animation and Virtual Worlds, 2004, 15(3-4):193-200.
[57] Du H X, Qin H. Medial axis extraction and shape manipulation of solid objects using parabolic PDEs[C]//Proceedings of The Ninth ACM Symposium on Solid Modeling and Applications (SM 2004), Genova:Eurographics Association, 2004:25-35.
[58] Du H X, Yoo T, Qin H. PDE-based medial axis extraction and shape manipulation of arbitrary meshes[J]. Journal of Systems Science and Complexity, 2008, 21(4):609-625.
[59] Wang S F, Hou T B, Li Si, et al. Anisotropic elliptic PDEs for feature classification[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10):1606-1618.
[60] Du H X, Qin H. Dynamic PDE-based surface design using geometric and physical constraints[J]. Graphical Models 2005, 67(1):43-71.
[61] Bao Y F, Guo X H, Qin H. Physically-based morphing of point-sampled surfaces[J]. Computer Animation and Virtual Worlds, 2005, 16(3-4):509-518.
[62] Wang S F, Hou T B, Su Z X, et al. Diffusion tensor weighted harmonic fields for feature classification[C]//The 19th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2011) Short Papers Proceedings, Kaohsiung:Eurographics Association, 2011:93-98.
[63] Guo X H, Qin Hg. Real-time mesh-free deformation[J]. Computer Animation and Virtual Worlds, 2005, 16(3-4):189-200.
[64] Guo X H, Li X, Bao Y F, et al. Meshless thin-shell simulation based on global conformal parameterization[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3):375-385.
[65] Tan Y H, Hua J, Qin H. Physically based modeling and simulation with dynamic spherical volumetric simplex splines[J]. Computer-Aided Design, 2010, 42(2):95-108.
[66] Huang H, Qin H, Yoo S, et al. Physics-based anomaly detection defined on manifold space[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 9(2):1-39.
[67] Przemyslaw Prusinkiewicz, Pierre Barbier de Reuille. Constraints of space in plant development[J]. Journal of Experimental Botany, 2010, 61(8):2117-2129.
[68] 迟小羽, 盛斌, 陈彦云, 等. 基于物理的植物叶子形态变化过程仿真造型[J]. 计算机学报, 2009, 32(2):221-230. Chi Xiaoyu, Sheng Bin, Chen Yanyun, et al. Physically based simulation of weathering plant leaves[J]. Chinese Journal of Computers, 2009, 32(2):221-230.
[69] 陆声链, 赵春江, 郭新宇, 等. 双层弹簧模型驱动的植物叶片运动模拟[J]. 系统仿真学报, 2009, 21(14):4383-4386. Lu Shenglian, Zhao Chunjiang, Guo Xinyu, et al. Bi-Layered mass-spring model for leaf motions[J]. Journal of System Simulation, 2009, 21(14):4383-4386.
[70] 唐勇, 曹园园, 陆声链, 等. 三维植物叶片萎蔫变化实时模拟[J].计算机辅助设计与图形学学报, 2013, 25(11):1643-1650. Tang Yong, Cao Yuanyuan, Lu Shenglian, et al. The simulation of 3D plant leaves wilting[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(11):1643-1650.
[71] 肖伯祥, 吴升, 郭新宇. 基于物理约束的玉米叶片建模方法[J]. 应用基础与工程科学学报, 2018, 待发表. Xiao Boxiang, Wu Sheng, Guo Xinyu. Virtual maize leaf modeling based on physical constraints[J]. Journal of Basic Science and Engineering, 2018, in press.
[72] 苗腾, 郭新宇, 温维亮, 等. 植物叶片萎蔫过程的物理表示方法[J]. 农业机械学报, 2014, 45(5):253-258. Miao Teng, Guo Xinyu, Wen Weiliang, et al. Physical description of plant leaf wilting[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(5):253-258.
[73] Wang I R, Wan J W L, Baranoski G V G. Physically-based simulation of plant leaf growth[J]. Computer Animation & Virtual Worlds, 2004, 15(3-4):237-244.
[74] Li Jianfang, Liu Min, Xu Weiwei, et al. Boundary-dominant flower blooming simulation[J]. Computer Animation and Virtual Worlds, 2015, 26(3-4):433-443.
[75] Mcdonnell K T, Qin H. A novel framework for physically based sculpting and animation of free-form solids[J]. Visual Computer, 2007, 23(4):285-296.
[76] Xiao B X, Qin H. A new data-driven approach to massspring simulation of plants[C]//30th International Conference on Computer Animation and Social Agents (CASA 2017), Seoul, South Korea:KAIST School of Computing and Graduate School of Culture Technology, 2017, 65-74.
[77] Jeongy SoHyeon, Parkz Si Hyung, Kimx Chang Hun. Simulation of morphology changes in drying leaves[J]. Computer Graphics Forum, 2013, 32(1):204-215.
[78] 王伯维, 周庆敏. 基于物理的植物形变和运动建模[J]. 南京工业大学学报, 2006, 28(2):92-97. Wang Bowei, Zhou Qingmin. Physically based modeling of plant distortion and movement[J]. Journal of Nanjing University of Technology, 2006, 28(2):92-97.
[79] Akagi Y, Kitajima K. Computer animation of swaying trees based on physical simulation[J]. Computers & Graphics, 2006, 30(4):529-539.
[80] Ralf Habel, Alexander Kusternig, Michael Wimmer. Physically guided animation of trees[J]. Computer Graphics Forum, 2010, 28(2):523-532.
[81] Sören Pirk, Till Niese, Torsten Hädrich, et al. Windy trees:Computing stress response for developmental tree models[J]. ACM Transactions on Graphics, 2014, 33(6):204.
[82] Yang M, Huang M C, Wu Enhua. Physically-based tree animation and leaf deformation using CUDA in real-time[M]. Transactions on edutainment VI. Springer-Verlag, 2011:27-39.
[83] Mandal Chhandomay, Qin H, Vemuri Baba C. A subdivisionbased finite element method and its applications[C]//The Sixth SIAM Conference on Geometric Design, Albuquerque, Mexico:Society for Industrial and Applied Mathematics, 1999:56-57.
[84] Mandal Chhandomay, Qin H, Vemuri Baba C. A novel fembased dynamic framework for subdivision surfaces[C]//In Proceedings of Fifth ACM Symposium on Solid Modeling and Applications (Solid Modeling'99), Ann Arbor, Michigan:ACM New York, 1999:191-202.
[85] Qin H. FEM-Based dynamic subdivision splines[C]//In Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2000), Hong Kong:IEEE Computer Society, 2000:184-191.
[86] Yang L P, Li S, Hao A M, et al. Realtime two-way coupling of meshless fluids and nonlinear FEM[J]. Computer Graphics Forum, 2012, 31(7):2037-2046.
[87] Yang C, Li S, Wang L L, et al. Real-time physical deformation and cutting of heterogeneous objects via hybrid coupling of meshless approach and finite element method[J]. Computer Animation and Virtual Worlds, 2014, 25(3-4):423-435.
[88] Barbic J, Zhao Y. Real-time large-deformation substructuring[J]. Acm Transactions on Graphics, 2011, 30(4):1-8.
[89] Stava O, Kratt J, Said M A M, et al. Plastic trees:Interactive self-adapting botanical tree models[J]. ACM Transactions on Graphics, 2012, 31(4):50.
[90] Wang B, Wu L H, Yin K K, et al. Deformation capture and modeling of soft objects[J]. ACM Transactions on Graphics, 2015, 34(4):94.
[91] Cai J P, Lin F, Lee Yong Tsui. Modeling and dynamics simulation for deformable objects of orthotropic materials[J]. The Visual Computer, 2016, 32(1):1-12.
[92] Dauda S M, Ahmad D, Khalina A, et al. Physical and mechanical properties of kenaf stems at varying moisture contents[J]. Agriculture and Agricultural Science Procedia, 2014, 2(2):370-374.
[93] Von Greg Forell, Robertson Daniel, Yang Shien Lee, et al. Preventing lodging in bioenergy crops:A biomechanical analysis of maize stalks suggests a new approach[J]. Journal of Experimental Botany, 2015, 66(14):4367-4371.
[94] Heidi Webber, Pierre Martre, Senthold Asseng, et al. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment:A multi-model comparison[J]. Field Crops Research, 2017, 202(1):21-35.
[95] Webber H, Ewert F, Kimball B A, et al. Simulating canopy temperature for modelling heat stress in cereals[J]. Environmental Modelling & Software, 2016, 77(C):143-155.
[96] 刘建军, 肖永贵, 祝芳彬, 等. 不同基因型冬小麦冠层温度与产量性状的关系[J]. 麦类作物学报, 2009, 29(2):283-288. Liu Jianjun, Xiao Yonggui, Zhu Fangbin, et al. Effect of canopy temperature on yield traits of different genotypes of winter wheat[J]. Journal of Triticeae Crops, 2009, 29(2):283-288.
[97] 王锡平, 郭焱, 李保国, 等. 玉米冠层内太阳直接辐射三维空间分布的模拟[J]. 生态学报, 2005, 25(1):7-12. Wang Xiping, Guo Yan, Li Baoguo, et al. Modelling the three dimensional distribution of direct solar radiation in maize Canopy[J]. Acta Ecologica Sinica, 2005, 25(1):7-12.
[98] 温维亮, 孟军, 郭新宇, 等. 基于辐射照度的作物冠层光分布计算系统设计[J]. 农业机械学报, 2009, 40(增刊1):190-193. Wen Weiliang, Meng Jun, Guo Xinyu, et al. Calculation system of light distribution within crop canopy based on radiosity method[J]. Transactions of The Chinese Society of Agricultural Machinery, 2009, 40(Suppl 1):190-193.
[99] 程秀花. 温室环境因子时空分布CFD模型构建及预测分析研究[D]. 镇江:江苏大学农业装备工程学院, 2011. Cheng Xiuhua. Prediction and CFD modeling for greenhouse microclimates temporospatial distributions[D]. Zhenjiang:School of Agricultural Equipment Engineering, Jiangsu University, 2011.
[100] Bartzanas T, Bochtis D D, Green O, et al. Prediction of quality parameters for biomass silage:A CFD approach[J]. Computers and Electronics in Agriculture, 2013, 93(2):209-216.
[101] Chen F B, Wang C B, Xie B Y, et al. Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics (SPH) formulation[J]. Computer Animation and Virtual Worlds, 2013, 24(3-4):215-224.
[102] Wang C B, Zhang Q, Kong F L, et al. Hybrid particle-grid fluid animation with enhanced details[J]. The Visual Computer, 2013, 29(9):937-947.
[103] Wang C, Wang C B, Qin H, et al. Video-based fluid reconstruction and its coupling with sph simulation[J]. The Visual Computer, 2017, 33(9):1211-1224.
[104] Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics, 2012, 31(4):1-8.
[105] Yin X, Shen X, Zhang F, et al. Particle-based simulation of fluid-solid coupling[J]. Communications in Computer & Information Science, 2013, 402:373-378.
[106] Sun H, Han J. Particle-based realistic simulation of fluidsolid interaction[J]. Computer Animation & Virtual Worlds, 2010, 21(6):589-595.
Outlines

/