[1] 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动[M]. 北京:科学出版社, 2012. Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid flow in mi-crofluidic chips[M]. Beijing:Science Press, 2012.
[2] Psaltis D, Quake S R and Yang C. Developing optofluidic tech-nology through the fusion of microfluidics and optics[J]. Na-ture, 2006, 442(7101):381-386.
[3] Erickson D, Sinton D, Psaltis D. Optofluidics for energy appli-cations[J]. Nature Photonics, 2011, 5(10):583-590.
[4] Monat C, Domachuk P, Eggleton B J. Intergrated optofluidics:A new river of light[J]. Nature Photonics, 2007, 1(2):106-114.
[5] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10):591-597.
[6] Zhao Y, Stratton Z S, Guo F, et al. Optofluidic imaging:now and beyond[J]. Lab on a Chip, 2013, 13(1):17-24.
[7] Wu W, Zhu X Q, Zuo Y F, et al. Precise sorting of gold nanoparticles in a flowing system[J]. ACS Photonics, 2016, 3(12):2497-2504.
[8] 杨兴华, 苑婷婷, 赵其锴, 等. 纤维集成式光流控传感器[J]. 应用科学学报, 2017, 35(4):503-522. Yang Xinhua, Yuan Tingting, Zhao Qikai, et al. In-fiber inte-grated optofluidic sensors[J]. Journal of Applied Sciences, 2017, 35(4):12434-12438.
[9] Wolfe D B, Conroy R S, Garstecki P, et al. Dynamic control of liquid-core/liquid-cladding optical waveguides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34):12434-12438.
[10] He X, Shao Q, Cao P, et al. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide[J]. Lab on a Chip, 2015, 15(5):1311-1319.
[11] Schmidt H, Aaron R and Hawkins A R. Optofluidic wave-guides:I. Concepts and implementations[J]. Microfluidics & Nanofluidics, 2008, 4(1-2):3-16.
[12] Lee K S, Kim S B, Lee K H, et al. Three-dimensional micro-fluidic liquid-core/liquid-cladding waveguide[J]. Applied Physics Letters, 2010, 97(2):12434.
[13] Nguyen N T. Micro-optofluidic lenses:A review[J]. Biomicro-fluidics, 2010, 4(3):381-318.
[14] Fei P, He Z, Zheng C, et al. Discretely tunable optofluidic compound microlenses[J]. Lab on a Chip, 2011, 11(17):2835-2841.
[15] Zhao H T, Yang Y, Chin L K, et al. Optofluidic lens with low spherical and low field curvature aberrations[J]. Lab on a Chip, 2016, 16(9):1617-1624.
[16] Chao K S, Lin M S, Yang R J. An in-plane optofluidic micro-chip for focal point control[J]. Lab on a Chip, 2013, 13(19):3886-3892.
[17] Song W Z, Psaltis D. Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit. Lab on a Chip, 2011, 11(14):2397-2402.
[18] Yu Z, Liang R, Huang Q, et al. Integrated tunable optofluid-ics optical filter based on mim side-coupled-cavity waveguide[J]. Plasmonics, 2012, 7(4):603-607.
[19] Song W Z, Vasdekis A E, Li Z Y, et al. Low-order distribut-ed feedback optofluidic dye laser with reduced threshold[J]. Applied Physics Letters, 2009, 94(5):381.
[20] Yang Y, Liu A Q, Lei L, et al. A tunable 3D optofluidic wave-guide dye laser via two centrifugal Dean flow streams[J]. Lab on a Chip, 2011, 11(18):3182-3187.
[21] Chin L K, Liu A Q, Soh Y C, et al. A reconfigurable optofluid-ic Michelson interferometer using tunable droplet grating[J]. Lab on a Chip, 2010, 10(8):1072-1078.
[22] Shi Y, Zhu X Q, Liang L, et al. Tunable focusing properties using optofluidic Fresnel zone plates[J]. Lab on A Chip, 2016, 16(23):4554-4559.
[23] Zhu J M, Shi Y, Zhu X Q, et al. Optofluidic marine phos-phate detection with enhanced absorption using a FabryPérot resonator[J]. Lab on a Chip, 2017, 17(23):4025-4030.
[24] Perumal M & Ranga Raju K G. Approximate convection-diffu-sion equations[J]. Journal of Hydrologic Engineering, 1999, 4(2):160-164.
[25] Mao X L, Steven Lin S Z, Lapsley M I, et al. Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom[J]. Lab on a Chip, 2009, 9(14):2050-2058.
[26] Shi Y, Liang L, Zhu X Q, et al. Tunable self-imaging effect using hybrid optofluidic waveguides[J]. Lab on a Chip, 2015, 15(23):4398-4403.
[27] 梁莉, 吴唯, 刘佳伟, 等. 流体动力学调制下的动态光流控波导及其生化应用[J]. 华南师范大学学报(自然科学版), 2015, 47(2):21-26. Liang Li, Wu Wei, Liu Jiawei, et al. Dynamic optofluidic waveguides for biochemical applications under the modulation of hydrodynamics[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2):21-26.
[28] Yang Y, Liu A Q, Chin L K, et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manip-ulation[J]. Nature Communications, 2012, 3(48):651.
[29] He X, Shao Q, Kong W, et al. A simple method for estimating mutual diffusion coefficients of ionic liquids-water based on an optofluidic chip[J]. Fluid Phase Equilibria, 2014, 366(366):9-15.
[30] Ward A J, Pendry J B. Refraction and geometry in Maxwell' s equation[J]. Optica Acta International Journal of Optics, 1996, 43(4):773-793.
[31] Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials[J]. Nature Materials, 2010, 9(5):387-396.
[32] Yang Y, Chin L K, Tsai J M, et al. Transformation optofluid-ics for large-angle light bending and tuning[J]. Lab on a Chip, 2012, 12(19):3785-3790.
[33] Liu H L, Zhu X Q, Liang L, et al. Tunable transformation opti-cal waveguide bends in liquid[J]. Optica, 2017, 4(8):839-846.
[34] Zhu X Q, Liang L, Zuo Y F, et al. Tunable visible cloaking using liquid diffusion[J]. Laser Photonics Review, 2017, 11(6):1700066.
[35] Tang S K T, Mayers B T, Vezenov D V, et al. Optical waveguiding using thermal gradients across homogeneous liq-uids in microfluidic channels[J]. Applied Physics Letters, 2006, 88(6):061112.
[36] Sheldon S J, Knight L V, Thorne J M. Laser-induced thermal lens effect:a new theoretical model[J]. Applied Optics, 1982, 21(9):1663-1669.
[37] Chen Q M, Jian A Q, Li Z H, et al. Optofluidic tunable lens-es using laser-induced thermal gradient[J]. Lab on a Chip, 2016, 16(1):104-111.
[38] Liu H L, Shi Y, Liang L, et al. A liquid thermal gradient re-fractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286.
[39] Xiong S, Liu A Q, Chin L K and Yang Y. An optofluidic prism tuned by two laminar flows[J]. Lab on a Chip, 2011, 11(11):1864-1869.
[40] Seow Y C, Lim S P, Lee H P. Tunable optofluidic switch via hydrodynamic control of laminar flow rate[J]. Applied Physics Letters, 2009, 95(11):381.
[41] Yu J Q, Yang Y, Liu A Q, et al. Microfluidic droplet grating for reconfigurable optical diffraction[J]. Optics Letters, 2010, 35(11):1890-1892.
[42] Cho S H, Godin J M, Chen C H, et al. Review Article:Re-cent advancements in optofluidic flow cytometer[J]. Biomicro-fluidics, 2010, 4(4):43001.
[43] Mao X, Nawaz A A, Lin S C, et al. An integrated, multipara-metric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing[J]. Biomicrofluid-ics, 2012, 6(2):151.
[44] Liang L, Zuo Y F, Wu W, et al. Optofluidic restricted imag-ing, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids[J]. Lab on a Chip, 2016, 16(16):3007-3014.
[45] Berger S A, Talbot L, Yao L S, Flow in curved pipes[J]. Annu-al review of fluid mechanics, 1983, 15(1):461-512.
[46] Li L, Zhu X Q, Liang L, et al. Switchable 3D optofluidic Ybranch waveguides tuned by Dean flows[J]. Scientific Reports, 2016, 6:38338.
[47] Liang L, Zhu X Q, Liu H L, et al. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow[J]. Lab on a Chip, 2017, 17(19):3258-3263.
[48] Shi Y Z, Xiong S, Chin L K, et al. Determination of size and refractive index of single gold nanoparticles using an optoflu-idic chip[J]. AIP Advances, 2017, 7(9):095024.
[49] Xu B, Shi Y, Lao Z, et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging[J]. Lab on a Chip, 2017, 18(3):442-450.
[50] Jiang H, Zhu T, Zhang H, et al. Droplet-based light-sheet flu-orescence microscopy for high-throughput sample prepara-tion, 3-D imaging and quantitative analysis on a chip[J]. Lab on A Chip, 2017, 17(13):2193.
[51] Yu J Q, Yang Y, Liu A Q, et al. Microfluidic droplet grating for reconfigurable optical diffraction[J]. Optics Letters, 2010, 35(11):1890-1892.
[52] Shen Z, Zou Y, Chen X. An integrated microfluidic signal gen-erator using multiphase droplet grating[J]. Microfluidics & Nanofluidics, 2013, 14(5):809-815.
[53] Xie Y, Sun M, Jin M, et al. Two-phase microfluidic flow mod-eling in an electrowetting display microwell[J]. European Physical Journal E, 2016, 39(2):16.
[54] Dai H, Cheng Y, Ye X, et al. A possible pathogenetic factor of sickle-cell disease based on fluorescent analysis via an op-tofluidic resonator[J]. Scientific Reports, 2017, 7(1), doi:10.1038/s41598-017-03634-8.
[55] Song W Z, Zhang X M, Liu A Q, et al. Refractive index mea-surement of single living cells using on-chip Fabry-Pérot cav-ity[J]. Applied Physics Letters, 2006, 89(20):203901.
[56] Song W Z, Liu A Q, Swaminathan S, et al. Determination of single living cell's dry/water mass using optofluidic chip[J]. Applied Physics Letters, 2007, 91(22):3511-3064.
[57] Liu P Y, Chin L K, Ser W, et al. Cell refractive index for cell biology and disease diagnosis:past, present and future[J]. Lab on a chip, 2016, 16(4):634.
[58] Armbrecht L, Gabernet G, Kurth F, et al. Characterizationof anticancer peptides at the single-cell level[J]. Lab on a Chip, 2017, 17(17):2933-2940.
[59] Wang N, Zhang X M, et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicro-fluidics, 2010, 4(4):43004.
[60] He X, Chen R, Zhu X, et al. Optofluidics based membrane mi-croreactor for wastewater treatment by photocatalytic ozonation[J]. Industrial & Engineering Chemistry Research, 2016, 55(31), doi:10.1021/acs.iecr.6b00562.