Exclusive

Tunable optofluidic devices based on the inhomogeneous media and their biochemical applications

  • LIANG Li ,
  • ZHU Xiaoqiang ,
  • SHI Yang ,
  • YANG Yi
Expand
  • School of Physics and Technology, Wuhan University, Wuhan 430072, China

Received date: 2018-04-20

  Online published: 2018-05-22

Abstract

Different optofluidic devices and their biochemical applications in inhomogeneous media are discussed. In optofluidic chips, various new technologies, such as the optofluidic waveguides, the lenses, the cell counting and the chemical detection, are developed and implemented from two aspects. Firstly, in the liquid-liquid inhomogeneous medium, the gradient and step refractive index distributions of the liquid in the micro cavity are realized by adjusting the flow rates in the channel and controlling the convection-diffusion between the liquids to achieve the special optical properties, such as the beam separation, the bending, and the self-focusing. Secondly, in the solidliquid inhomogeneous medium, a series of adjustable and more sensitive detections are achieved by combining the special microfluidic structure with the liquids. These new technologies play a key role in many biochemical applications, for example, the biosensing, the energy production and the seawater detection. Thus, with the development of the optofluidics, the tunable devices in inhomogeneous media will have great potential biomedical applications.

Cite this article

LIANG Li , ZHU Xiaoqiang , SHI Yang , YANG Yi . Tunable optofluidic devices based on the inhomogeneous media and their biochemical applications[J]. Science & Technology Review, 2018 , 36(10) : 45 -55 . DOI: 10.3981/j.issn.1000-7857.2018.10.005

References

[1] 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动[M]. 北京:科学出版社, 2012. Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid flow in mi-crofluidic chips[M]. Beijing:Science Press, 2012.
[2] Psaltis D, Quake S R and Yang C. Developing optofluidic tech-nology through the fusion of microfluidics and optics[J]. Na-ture, 2006, 442(7101):381-386.
[3] Erickson D, Sinton D, Psaltis D. Optofluidics for energy appli-cations[J]. Nature Photonics, 2011, 5(10):583-590.
[4] Monat C, Domachuk P, Eggleton B J. Intergrated optofluidics:A new river of light[J]. Nature Photonics, 2007, 1(2):106-114.
[5] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10):591-597.
[6] Zhao Y, Stratton Z S, Guo F, et al. Optofluidic imaging:now and beyond[J]. Lab on a Chip, 2013, 13(1):17-24.
[7] Wu W, Zhu X Q, Zuo Y F, et al. Precise sorting of gold nanoparticles in a flowing system[J]. ACS Photonics, 2016, 3(12):2497-2504.
[8] 杨兴华, 苑婷婷, 赵其锴, 等. 纤维集成式光流控传感器[J]. 应用科学学报, 2017, 35(4):503-522. Yang Xinhua, Yuan Tingting, Zhao Qikai, et al. In-fiber inte-grated optofluidic sensors[J]. Journal of Applied Sciences, 2017, 35(4):12434-12438.
[9] Wolfe D B, Conroy R S, Garstecki P, et al. Dynamic control of liquid-core/liquid-cladding optical waveguides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34):12434-12438.
[10] He X, Shao Q, Cao P, et al. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide[J]. Lab on a Chip, 2015, 15(5):1311-1319.
[11] Schmidt H, Aaron R and Hawkins A R. Optofluidic wave-guides:I. Concepts and implementations[J]. Microfluidics & Nanofluidics, 2008, 4(1-2):3-16.
[12] Lee K S, Kim S B, Lee K H, et al. Three-dimensional micro-fluidic liquid-core/liquid-cladding waveguide[J]. Applied Physics Letters, 2010, 97(2):12434.
[13] Nguyen N T. Micro-optofluidic lenses:A review[J]. Biomicro-fluidics, 2010, 4(3):381-318.
[14] Fei P, He Z, Zheng C, et al. Discretely tunable optofluidic compound microlenses[J]. Lab on a Chip, 2011, 11(17):2835-2841.
[15] Zhao H T, Yang Y, Chin L K, et al. Optofluidic lens with low spherical and low field curvature aberrations[J]. Lab on a Chip, 2016, 16(9):1617-1624.
[16] Chao K S, Lin M S, Yang R J. An in-plane optofluidic micro-chip for focal point control[J]. Lab on a Chip, 2013, 13(19):3886-3892.
[17] Song W Z, Psaltis D. Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit. Lab on a Chip, 2011, 11(14):2397-2402.
[18] Yu Z, Liang R, Huang Q, et al. Integrated tunable optofluid-ics optical filter based on mim side-coupled-cavity waveguide[J]. Plasmonics, 2012, 7(4):603-607.
[19] Song W Z, Vasdekis A E, Li Z Y, et al. Low-order distribut-ed feedback optofluidic dye laser with reduced threshold[J]. Applied Physics Letters, 2009, 94(5):381.
[20] Yang Y, Liu A Q, Lei L, et al. A tunable 3D optofluidic wave-guide dye laser via two centrifugal Dean flow streams[J]. Lab on a Chip, 2011, 11(18):3182-3187.
[21] Chin L K, Liu A Q, Soh Y C, et al. A reconfigurable optofluid-ic Michelson interferometer using tunable droplet grating[J]. Lab on a Chip, 2010, 10(8):1072-1078.
[22] Shi Y, Zhu X Q, Liang L, et al. Tunable focusing properties using optofluidic Fresnel zone plates[J]. Lab on A Chip, 2016, 16(23):4554-4559.
[23] Zhu J M, Shi Y, Zhu X Q, et al. Optofluidic marine phos-phate detection with enhanced absorption using a FabryPérot resonator[J]. Lab on a Chip, 2017, 17(23):4025-4030.
[24] Perumal M & Ranga Raju K G. Approximate convection-diffu-sion equations[J]. Journal of Hydrologic Engineering, 1999, 4(2):160-164.
[25] Mao X L, Steven Lin S Z, Lapsley M I, et al. Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom[J]. Lab on a Chip, 2009, 9(14):2050-2058.
[26] Shi Y, Liang L, Zhu X Q, et al. Tunable self-imaging effect using hybrid optofluidic waveguides[J]. Lab on a Chip, 2015, 15(23):4398-4403.
[27] 梁莉, 吴唯, 刘佳伟, 等. 流体动力学调制下的动态光流控波导及其生化应用[J]. 华南师范大学学报(自然科学版), 2015, 47(2):21-26. Liang Li, Wu Wei, Liu Jiawei, et al. Dynamic optofluidic waveguides for biochemical applications under the modulation of hydrodynamics[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2):21-26.
[28] Yang Y, Liu A Q, Chin L K, et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manip-ulation[J]. Nature Communications, 2012, 3(48):651.
[29] He X, Shao Q, Kong W, et al. A simple method for estimating mutual diffusion coefficients of ionic liquids-water based on an optofluidic chip[J]. Fluid Phase Equilibria, 2014, 366(366):9-15.
[30] Ward A J, Pendry J B. Refraction and geometry in Maxwell' s equation[J]. Optica Acta International Journal of Optics, 1996, 43(4):773-793.
[31] Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials[J]. Nature Materials, 2010, 9(5):387-396.
[32] Yang Y, Chin L K, Tsai J M, et al. Transformation optofluid-ics for large-angle light bending and tuning[J]. Lab on a Chip, 2012, 12(19):3785-3790.
[33] Liu H L, Zhu X Q, Liang L, et al. Tunable transformation opti-cal waveguide bends in liquid[J]. Optica, 2017, 4(8):839-846.
[34] Zhu X Q, Liang L, Zuo Y F, et al. Tunable visible cloaking using liquid diffusion[J]. Laser Photonics Review, 2017, 11(6):1700066.
[35] Tang S K T, Mayers B T, Vezenov D V, et al. Optical waveguiding using thermal gradients across homogeneous liq-uids in microfluidic channels[J]. Applied Physics Letters, 2006, 88(6):061112.
[36] Sheldon S J, Knight L V, Thorne J M. Laser-induced thermal lens effect:a new theoretical model[J]. Applied Optics, 1982, 21(9):1663-1669.
[37] Chen Q M, Jian A Q, Li Z H, et al. Optofluidic tunable lens-es using laser-induced thermal gradient[J]. Lab on a Chip, 2016, 16(1):104-111.
[38] Liu H L, Shi Y, Liang L, et al. A liquid thermal gradient re-fractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286.
[39] Xiong S, Liu A Q, Chin L K and Yang Y. An optofluidic prism tuned by two laminar flows[J]. Lab on a Chip, 2011, 11(11):1864-1869.
[40] Seow Y C, Lim S P, Lee H P. Tunable optofluidic switch via hydrodynamic control of laminar flow rate[J]. Applied Physics Letters, 2009, 95(11):381.
[41] Yu J Q, Yang Y, Liu A Q, et al. Microfluidic droplet grating for reconfigurable optical diffraction[J]. Optics Letters, 2010, 35(11):1890-1892.
[42] Cho S H, Godin J M, Chen C H, et al. Review Article:Re-cent advancements in optofluidic flow cytometer[J]. Biomicro-fluidics, 2010, 4(4):43001.
[43] Mao X, Nawaz A A, Lin S C, et al. An integrated, multipara-metric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing[J]. Biomicrofluid-ics, 2012, 6(2):151.
[44] Liang L, Zuo Y F, Wu W, et al. Optofluidic restricted imag-ing, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids[J]. Lab on a Chip, 2016, 16(16):3007-3014.
[45] Berger S A, Talbot L, Yao L S, Flow in curved pipes[J]. Annu-al review of fluid mechanics, 1983, 15(1):461-512.
[46] Li L, Zhu X Q, Liang L, et al. Switchable 3D optofluidic Ybranch waveguides tuned by Dean flows[J]. Scientific Reports, 2016, 6:38338.
[47] Liang L, Zhu X Q, Liu H L, et al. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow[J]. Lab on a Chip, 2017, 17(19):3258-3263.
[48] Shi Y Z, Xiong S, Chin L K, et al. Determination of size and refractive index of single gold nanoparticles using an optoflu-idic chip[J]. AIP Advances, 2017, 7(9):095024.
[49] Xu B, Shi Y, Lao Z, et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging[J]. Lab on a Chip, 2017, 18(3):442-450.
[50] Jiang H, Zhu T, Zhang H, et al. Droplet-based light-sheet flu-orescence microscopy for high-throughput sample prepara-tion, 3-D imaging and quantitative analysis on a chip[J]. Lab on A Chip, 2017, 17(13):2193.
[51] Yu J Q, Yang Y, Liu A Q, et al. Microfluidic droplet grating for reconfigurable optical diffraction[J]. Optics Letters, 2010, 35(11):1890-1892.
[52] Shen Z, Zou Y, Chen X. An integrated microfluidic signal gen-erator using multiphase droplet grating[J]. Microfluidics & Nanofluidics, 2013, 14(5):809-815.
[53] Xie Y, Sun M, Jin M, et al. Two-phase microfluidic flow mod-eling in an electrowetting display microwell[J]. European Physical Journal E, 2016, 39(2):16.
[54] Dai H, Cheng Y, Ye X, et al. A possible pathogenetic factor of sickle-cell disease based on fluorescent analysis via an op-tofluidic resonator[J]. Scientific Reports, 2017, 7(1), doi:10.1038/s41598-017-03634-8.
[55] Song W Z, Zhang X M, Liu A Q, et al. Refractive index mea-surement of single living cells using on-chip Fabry-Pérot cav-ity[J]. Applied Physics Letters, 2006, 89(20):203901.
[56] Song W Z, Liu A Q, Swaminathan S, et al. Determination of single living cell's dry/water mass using optofluidic chip[J]. Applied Physics Letters, 2007, 91(22):3511-3064.
[57] Liu P Y, Chin L K, Ser W, et al. Cell refractive index for cell biology and disease diagnosis:past, present and future[J]. Lab on a chip, 2016, 16(4):634.
[58] Armbrecht L, Gabernet G, Kurth F, et al. Characterizationof anticancer peptides at the single-cell level[J]. Lab on a Chip, 2017, 17(17):2933-2940.
[59] Wang N, Zhang X M, et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicro-fluidics, 2010, 4(4):43004.
[60] He X, Chen R, Zhu X, et al. Optofluidics based membrane mi-croreactor for wastewater treatment by photocatalytic ozonation[J]. Industrial & Engineering Chemistry Research, 2016, 55(31), doi:10.1021/acs.iecr.6b00562.
Outlines

/