[1] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3700 million year old microbial structures[J]. Nature, 2016, 537:535-538.
[2] Dodd M, Papineau D, Grenne T, et al. Evidence for early life in earth's oldest hydrothermal vent precipitates[J]. Nature, 2017, 543:60-64.
[3] Cates N L, Ziegler K, Schmitt A K, et al. Reduced, reused and recycled:Detrital zircons define a maximum age for the Eoarchean (ca.3750-3780 Ma) Nuvvuagittuq supracrustal belt, Québec (Canada)[J]. Earth Planet Science Letter, 2013, 362:283-293.
[4] Darling J R, et al. Eoarchean to Neoarchean evolution of the Nuvvuagittuq supracrustal belt:New insights from U-Pb zircon geochronology[J]. American Journal of Sciences, 2013, 313:844-876.
[5] O'Neil J, CarlsonRW, FrancisD, et al. Neodymium-142 evidence for Hadean mafic crust[J]. Science, 2008, 321:1828-1831.
[6] O'Neil J, Carlson R W, Paquette J-L, et al. Formation age and metamorphic history of the Nuvvuagittuq greenstone belt[J]. Precambrian Research, 2012, 220-221:23-44.
[7] Bernard S, Papineau D. Graphitic carbons and biosignatures[J]. Elements, 2014, 10:435-440.
[8] Zuilen M A, Lepland A, Arrhenius G. Reassessing the evidence for the earliest traces of life[J]. Nature, 2002, 418:627-630.
[9] Schopf J M, Kitajima K, Spicuzza M J, et al. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions[J]. PNAS, 2017-12-18. doi:10.1073/pnas.1718063115.
[10] Hagadorn J W, Xiao S, Donoghue P, et al. Cellular and subcellular structure of neoproterozoic animal embryos[J]. Science, 206, 314:291-294.
[11] Bailey J V, Joye S B, KalanetraKM. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites[J]. Nature, 2007, 445:198-201.
[12] Huldtgren T, Cunningham J A, YinC, et al. Fossilized nuclei and germination structures identify Ediacaran "Animal Embryos" as encysting protists[J]. Science, 2011, 334:1696-1699.
[13] Schiffbauer J D, Xiao S, Sen Sharma K. The origin of intracellular structures in Ediacaran metazoan embryos[J]. Geology, 2012, 40:223-226.
[14] Yin Z, Cunningham J, Vagaas K, et al. Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota[J]. Precambrian Research, 2017, 301:145-151.
[15] Han J, Morris S, Ou Q, et al. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)[J]. Nature, 2017, 542:228-231.
[16] Zamora S, Rahman I A, Smith A B. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution[J]. PLoS One, 2012, 7:e38296.
[17] Nanglu K, Caron J-B, Morris C, et al. Cambrian suspensionfeeding tubicolous hemichordates[J]. BMC Biology, 2016, 14:56.
[18] Ou Q, Conway M S, Han J, et al. Evidence for gill slits and a pharynx in Cambrian vetulicolians:Implications for the early evolution of deuterostomes[J]. BMC Biology, 2012, 10:81.
[19] Gillis J A, Fritzenwanker J H, Lowe C J. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network[J]. Proceedings of Royal Society of London B, 2012, 279:237-246.
[20] Schoenemanna B, Pärnaste H, Clarkson E. Structure and function of a compound eye, more than half a billion years old[J]. PNAS, 2017, 114(51):13489-13494.
[21] Zhao F, Bottjer D, Hu S, et al. Complexity and diversity of eyes in Early Cambrian ecosystems[J]. Scientific Reports, 2013, doi:10.1038/srep02751.
[22] Aria C, Caron J-B. Mandibulate convergence in an armoured Cambrian stem chelicerate[J]. BMC Evolutionary Biology, 2017, 17:261.
[23] Hoyal C J, Conway M S. Nutrient-dependent growth underpinned the Ediacaran transition to large body size[J]. Nature Ecology & Evolution, 2017, 1:1201-1204.
[24] Stein W, Mannolini F, Hernick L. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa[J]. Nature, 2007, 446:904-907.
[25] Xu H, Berry C, Stein W, et al. Unique growth strategy in the Earth's first trees revealed in silicified fossil trunks from China[J]. PNAS, 2017, 114(45):12009-12014.
[26] Sepkoski J. A kinetic model of Phanerozoic taxonomic diversity Ⅲ. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10:246-267.
[27] Botting J, Muir L, Zhang Y, et al. Flourishing sponge-based ecosystems after the End-Ordovician mass extinction[J]. Current Biology, 2017, 27(4):556-562.
[28] Cai C, Huang D, Newton A, et al. Early evolution of specialized termitophily in Cretaceous rove beetles[J]. Current Biology, 2017, 27(8):1229-1235.
[29] Cai C, Leschen R, Hibbett D, et al. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous[J]. Nature Communication, 2017, doi:10.1038/ncomms14894.
[30] Sánchez-García A, Delclòs X, Engel M, et al. Marsupial brood care in Cretaceous tanaidaceans[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-04050-8.
[31] Yin Z, Cai C. Huang D, et al. Specialized adaptations for springtail predation in Mesozoic beetles[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-00187-8.
[32] Z. yła D, Yamamoto M, Wolf-Schwenninger K, et al. Cretaceous origin of the unique prey-capture apparatus in megadiverse genus:Stem lineage of Steninae rove beetles discovered in Burmese amber[J]. Scientific Reports, 2017, doi:10.1038/srep45904.
[33] Rio C, Haevermans T, de Franceschi D. First record of an Icacinaceae Miers fossil flower from Le Quesnoy (Ypresian, France) amber[J]. Scientific Reports, 2017, wsdoi:10.1038/s41598-017-11536-y.
[34] Dutta S, Mehrotra R, Paul S, et al. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-09385-w.
[35] Regalado L, Schmidt A, Appelhans M, et al. A fossil species of the enigmatic early polypod fern genus Cystodium (Cystodiaceae) in Cretaceous amber from Myanmar[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-14985-7.
[36] Zheng D, Nel A, Jarzembowski E, et al. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly[J]. Scientific Reports, 2017, doi:10.1038/srep44932.
[37] Wang X, Kellner A, Jiang S, et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur[J]. Science, 2017, 358(6367):1197-1201.
[38] Wang X, Kellner A, Jiang S, et al. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China[J]. Current Biology, 2014, 24:1323-1330.
[39] Hublin J, Ben-Ncer A, Bailey S, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens[J]. Nature, 2017, 546:289-292.
[40] Richter D, Grün R, Joannes-Boyau R, et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age[J]. Nature, 2017, 546:293-296.
[41] Stringer C, Galway-Witham J. Palaeoanthropology:On the origin of our species[J]. Nature, 2017, 546:212-214.
[42] Schlebusch C, Malmström H, Günther T, et al. Ancient genomes from southern Africa pushes modern human divergence beyond 260,000 years ago[J]. BioRxiv, 2017, doi:http://dx.doi.org/10.1101/145409.
[43] Athreya S, Wu X. A multivariate assessment of the Dali hominin cranium from China:Morphological affinities and implications for Pleistocene evolution in East Asia[J]. American Journal of Physical Anthropology, 2017, 164(4):679-701.
[44] Li Z, Wu X, Zhou L, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017, 355(6328):969-972.