Special lssues

Hot spots of nuclear energy science and technology in 2017

  • YANG Jun ,
  • YANG Zhangcan ,
  • XU Lejin ,
  • WU Hsingtzu ,
  • DENG Chengcheng ,
  • ZHOU Xiafeng ,
  • HU Bangda
Expand
  • 1. Department of Nuclear Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. 20
    0. Set. 3, HsinHai Road, Taipei, Taiwan 10668, China;
    3. Law School, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2017-12-01

  Revised date: 2017-12-30

  Online published: 2018-01-30

Abstract

This paper summarizes the worldwide milestones of research and development of nuclear energy science and technology in 2017. The hotspots and frontier in the nuclear energy science and technology field are briefly reviewed. Some important advances in Generation IV reactors, advanced technologies of Generation III reactors, virtually digital reactor, advanced nuclear materials, the treatment and disposal of radioactive waste and spent fuel, and the relevant law and public policy of nuclear safety are covered.

Cite this article

YANG Jun , YANG Zhangcan , XU Lejin , WU Hsingtzu , DENG Chengcheng , ZHOU Xiafeng , HU Bangda . Hot spots of nuclear energy science and technology in 2017[J]. Science & Technology Review, 2018 , 36(1) : 31 -45 . DOI: 10.3981/j.issn.1000-7857.2018.01.004

References

[1] 陆琦. 我国首座铅基核反应堆零功率装置达临界[EB/OL].[2017-12-10]. http://www.cas.cn/cm/201612/t20161226_45859-64.shtml.
[2] 宋英明, 高庆瑜, 徐宇超, 等. 基于IQS/MC方法的ADS次临界反应堆中子时空动力学模拟分析[J]. 原子能科学技术, 2017, 51(3):450-456.
[3] 陈其昌, 司胜义, 赵金坤, 等. 无铍钍基熔盐堆堆芯设计与安全研究[J]. 原子能科学技术, 2017, 51(7):1252-1259.
[4] 司胜义, 陈其昌, 卑华, 等. 新型钍基熔盐堆多物理计算模型及分析[J]. 强激光与粒子束, 2017, 29(1):75-82.
[5] 卑华, 司胜义, 陈其昌, 等. 新型钍基熔盐堆堆芯方案及燃耗分析[J]. 强激光与粒子束, 2017, 29(1):83-87.
[6] 中科院、甘肃省签署四代先进核能钍基熔盐堆战略合作框架协议[EB/OL].[2017-12-10]. http://news.sina.com.cn/o/2017-11-15/doc-ifynwhww5205966.shtml.
[7] 立足自主创新,打造核电走出去的国家名片[EB/OL].[2017-12-10]. http://news.bjx.com.cn/html/20171019/856214.shtml.
[8] 王永福, 孙玉良. 高温气冷堆供热项目厂址选择法规标准适用性研究[J]. 科技导报, 2017, 35(13):24-28.
[9] 刘杨, 汪俊. 高温气冷堆燃料运输容器热工计算分析[J]. 核动力工程, 2017, 38(5):160-163.
[10] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆联合循环方案研究[J]. 原子能科学技术, 2017, 51(9):1578-1584.
[11] 清华参与共建的中国-印尼高温气冷堆联合实验室在雅加达揭牌[EB/OL].[2017-12-10]. http://news.tsinghua.edu.cn/publish/thunews/9659/2017/20171130162833603999441/201-71130162833603999441_.html.
[12] 现有反应堆出口受阻日本拟卖给波兰新型高温气冷堆[EB/OL].[2017-12-10]. http://sh.qihoo.com/2s1cmu5yg1y?sign=look.
[13] 世界核电迎来"中国芯"高温气冷堆受到国际关注[EB/OL].[2017-12-10]. http://news.xinhuanet.com/politics/2017-10/09/c_1121770973.htm.
[14] 中国核学会. 2015-2017年度中国十大核科技进展[EB/OL].[2017-12-21]. http://www.stdaily.com/kjzc/index.shtml.
[15] 章庆华, 王佳明, 王海东, 等. 行波堆渐行渐近-全球首座行波堆示范电厂加快面世步伐[J]. 中国核工业, 2017(4):22-27.
[16] The Generation IV InternationalForum-ISSCWR-8[EB/OL].[2017-12-12]. https://www.gen-4.org/gif/jcms/c_91758/isscwr--8.
[17] 杨平, 明哲东, 许余, 等. 超临界水堆燃料组件选型论证研究[J]. 强激光与粒子束, 2017, 29(1):143-147.
[18] 刘雨, 陆道纲, 汪喆, 等. 超临界水堆燃料棒流致振动简化模型[J]. 核科学与工程, 2017, 37(3):362-366.
[19] 王连杰, 赵文博, 陈炳德, 等. 超临界水堆堆芯典型瞬态三维核热耦合分析[J]. 核动力工程, 2017, 5:145-150.
[20] Nguyen A T, Namgung I. Structural assessments of plate type support system for APR1400 reactor[J]. Nuclear Engineering & Design, 2017, 314(Supplement C):256-270.
[21] Li C, Li L, Li J, et al. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage[J]. Nuclear Engineering & Design, 2017, 313(Supplement C):185-189.
[22] Sui D, Lu D, Shang C, et al. Investigation on response of HPR1000 under different mitigation strategies after SGTR accident[J]. Annals of Nuclear Energy, 2018, 112(Supplement C):328-336.
[23] Sui D, Lu D, Shang C, et al. Response characteristics of HPR1000 primary circuit under different working conditions of the atmospheric relief system after SBLOCA[J]. Nuclear Engineering & Design, 2017, 314(Supplement C):307-317.
[24] Sun D C, Li Y, Xi Z, et al. Experimental evaluation of safety performance of emergency passive residual heat removal system in HPR1000[J]. Nuclear Engineering & Design, 2017, 318:54-60.
[25] Dong G K. The effect of nodalization and temperature of reactor upper region:Sensitivity analysis for APR-1400 LBLOCA[J]. Annals of Nuclear Energy, 2017, 99(Supplement C):28-35.
[26] Kim I G, Bang I C. Hydraulic control rod drive mechanism concept for passive in-core cooling system (PINCs) in fully passive advanced nuclear power plant[J]. Experimental Thermal & Fluid Science, 2017, 85:266-278.
[27] Hasslberger J, Kim H K, Kim B J, et al. Three-dimensional CFD analysis of hydrogen-air-steam explosions in APR1400 containment[J]. Nuclear Engineering & Design, 2017, 320:386-399.
[28] Wang M, Bai L, Wang L, et al. Thermal hydraulic and stress coupling analysis for AP1000 pressurized thermal shock (PTS) study under SBLOCA scenario[J]. Applied Thermal Engineering, 2017, 122(25):158-170.
[29] Agrawal N, Ali S M, Balasubramaniyan V. Innovative hydrogen recombiner concept for severe accident management in nuclear power plants[J]. Nuclear Engineering & Design, 2017, 323(Supplement C):359-366.
[30] Sun X, Cao X, Shi X, et al. Comparative study on aerosol removal by natural processes in containment in severe accident for AP1000 reactor[J]. Annals of Nuclear Energy, 2016, 99(Supplement C):216-226.
[31] Liu Y, Lu D, Liu H, et al. The shaking table experiments on sliding and overturning of CAP1400 spent fuel storage rack with the effect of FSI[J]. Annals of Nuclear Energy, 2018, 112(Supplement C):277-288.
[32] Liu Y, Lu D, Li W, et al. Effect of neighboring wall on the fluid added mass of CAP1400 spent fuel storage rack[J]. Progress in Nuclear Energy, 2017, 101(Part B):177-187.
[33] Yang Z, Shan J, Gou J. Preliminary assessment of a combined passive safety system for typical 3-loop PWR CPR1000[J]. Nuclear Engineering & Design, 2017, 313(Supplement C):148-161.
[34] 中国核协会. 2015-2017年度中国十大核科技进展[EB/OL].[2017-12-20]. http://www.stdaily.com/kjzc/top/2017-10/20/content_585855.shtml.
[35] 宋丹戎, 秦忠, 程慧平, 等. ACP100模块化小型堆研发进展[J]. 中国核电, 2017, 10(2):172-177.
[36] 中国核协会. 中国核学会2017年学术年会大会报告集锦[EB/OL].[2017-12-20]. http://mp.weixin.qq.com/s/meSrHlEwnOIdOdv1b8Z2vQ.
[37] 张国旭, 解衡, 谢菲. 小型模块式压水堆设计综述[J]. 原子能科学技术, 2015, (B5):40-47.
[38] Mycle S. The world nuclear industry status report 2017[R]. Paris:Independent Consultant, 2017.
[39] The consortium for advanced simulation of light water reactors[EB/OL].[2017-12-20]. http://www.casl.gov/vision.shtml.
[40] Jones C, HetzlerA, DinhN, et al. Initial verification and validation assessment for VERA[R], United States:USDOE, 2017.
[41] Godfrey A T, Collins BS, GentryCA, et al. Watts bar unit 2 startup results with VERA[R], United States:USDOE, 2017.
[42] Chanaron B. Overview of the NURESAFE European project[J]. Nuclear Engineering & Design, 2017, 321(Supplement C):1-7.
[43] García-Herranz N, Cuervo D, Sabater A, et al. Multiscale neutronics/thermal-hydraulics coupling with COBAYA4 code for pin-by-pin PWR transient analysis[J]. Nuclear Engineering & Design, 2017, 321(Supplement C):38-47.
[44] Perin Y, Escalante J J. Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):48-56.
[45] Bois G. Direct Numerical Simulation of a turbulent bubbly flow in a vertical channel:Towards an improved Second-Order Reynolds Stress Model[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):92-103.
[46] Mimouni S, Fleau S, Vincent S. CFD calculations of flow pattern maps and LES of multiphase flows[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):118-131.
[47] Zhang H, Guo J, Lu J, et al. A Comparison of Coupling Algorithms for N/TH Transient Problems in HTR[C]. M&C 2017-International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, 16-20, 2017.
[48] 卢佳楠, 郭炯, 李富. JFNK在高温堆扩散计算中的应用[J]. 强激光与粒子束, 2017, 29(3):127-132.
[49] 黄凯. 数值反应堆的高保真燃耗计算方法研究[D]. 西安:西安交通大学能源与动力工程学院, 2017.
[50] 张滕飞. 非均匀变分节块法及其在三维全堆芯中子学计算中的应用[D]. 西安:西安交通大学能源与动力工程学院, 2017.
[51] ANS. Nuclear grand challenges[EB/OL].[2017-12-20]. http://www.ans.org/challenges/.
[52] ANS. Challenge:Accelerate development and qualification of advanced materials[EB/OL].[2017-12-20]. http://www.ans.org/challenges/materials/.
[53] Charit I. Accident tolerant nuclear fuels and cladding materials[J]. JOM, 2017, 90(6):24.
[54] Chen S, Yuan C. Neutronic analysis on potential accident tolerant fuel-cladding combination U3Si2-FeCrAl[J]. Science and Technology of Nuclear Installations, 2017, 24(2):1-12.
[55] Brown N R, Wysocki A J, Terrani K A, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J]. Annals of Nuclear Energy, 2017, 99(Supplement C):353-365.
[56] Liu M, Brown N R, Terrani K A, et al. Potential impact of accident tolerant fuel cladding critical heat flux characteristics on the high temperature phase of reactivity initiated accidents[J]. Annals of Nuclear Energy, 2017, 110(Supplement C):48-62.
[57] Cinbiz M N, Brown N, Terrani K A, et al. Energy materials 2017:The mechanical response evaluation of advanced claddings during proposed reactivity initiated accident conditions[M]. Charm, Switzerland:Springer International Publishing, 2017:355-365.
[58] Gamble K A, Barani T, Pizzocri D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491(Supplement C):55-66.
[59] Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy[J]. Oxidation of Metals, 2017, 87(3-4):431-441.
[60] Pint B A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam[J]. Corrosion Reviews, 2017, 35(3):167-175.
[61] Jolkkonen M, Malkki P, Johnson K, et al. Uranium nitride fuels in superheated steam[J]. Journal of Nuclear Science and Technology, 2017, 54(5):513-519.
[62] Miao Y, Harp J, Mo K, et al. In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures[J]. Journal of Nuclear Materials, 2017, 484:168-173.
[63] Miao Y, Harp J, Mo K, et al. Bubble morphology in U3Si2 implanted by high-energy Xe ions at 300℃[J]. Journal of Nuclear Materials, 2017, 495:146-153.
[64] Field K G, Briggs S A, Sridharan K, et al. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa[J]. Journal of Nuclear Materials, 2017, 495:20-26.
[65] Lin Y R, Chen L G, Hsieh C Y, et al. Atomic configuration of point defect clusters in ion-irradiated silicon carbide[J]. Scientific reports, 2017, 7(1):14635.
[66] Westinghouse launches its EnCore Fuel[EB/OL].[2017-12-20]. http://www.world-nuclear-news.org/UF-Westinghouse-launches-its-EnCore-Fuel-14061702.html.
[67] 张楷欣. 中国事故容错燃料技术革命取得积极进展[EB/OL].[2017-12-14]. http://www.chinanews.com/cj/2017/12-11/839-7876.shtml.
[68] Zhang Y, Xu G, Wang Y, et al. Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725:283-290.
[69] Reiser J, Garrison L, Greuner H, et al. Ductilisation of tungsten (W):Tungsten laminated composites[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69:66-109.
[70] Cheng L, De Temmerman G, Morgan T W, et al. Mitigated blistering and deuterium retention in tungsten exposed to high-flux deuterium-neon mixed plasmas[J]. Nuclear Fusion, 2017, 57(4):046028.
[71] Parish C M, Wang K, Doerner R P, et al. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions[J]. Scripta Materialia, 2017, 127:132-135.
[72] Wang K, Doerner R P, Baldwin M J, et al. Morphologies of tungsten nanotendrils grown under helium exposure[J]. Scien tific Reports, 2017, 7:42315.
[73] Hammond K D, Blondel S, Hu L, et al. Large-scale atomistic simulations of low-energy helium implantation into tungsten single crystals[J]. Acta Materialia, 2018, 144:561-578.
[74] Lu C, Niu L, Chen N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multi component single-phase alloys[J]. Nature communications, 2016, 7:13564.
[75] Ullah M W, Xue H, Velisa G, et al. Effects of chemical alter nation on damage accumulation in concentrated solid-solu tion alloys[J]. Scientific reports, 2017, 7(1):41-46.
[76] Lu C, Yang T, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution al loys[J]. Acta Materialia, 2017, 127:98-107.
[77] Zhang Y, Zhao S, Weber W J, et al. Atomic-level heterogene ity and defect dynamics in concentrated solid-solution alloys[J]. Current Opinion in Solid State and Materials Science, 2017, 21(5):221-237.
[78] Zhao S, Weber W J, Zhang Y. Unique challenges for model ing defect dynamics in concentrated solid-solution alloys[J]. JOM, 2017, 69(11):2084-2091.
[79] Wang Z, Liu C T, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys[J]. Physical Review Materials, 2017, 1(4):043601.
[80] Chen D, Li N, Yuryev D, et al. Self-organization of helium precipitates into elongated channels within metal nanolayers[J]. Science Advances, 2017, 3(11):eaao2710.
[81] 邓少刚. 关于召开《放射性废物分类》宣贯会的通知[EB/OL].[2017-12-15]. http://www.zhb.gov.cn/gkml/hbb/bgth/201-712/t20171214_427940_wap.shtml.
[82] 方祥洪, 杨彬, 马若霞. 放射性废油处理技术研究[J]. 山东化工, 2017, 46(7):203-204.
[83] 徐乐瑾, 隋增光. 湿式氧化法处理放射性废离子交换树脂研究进展[J]. 科技导报, 2017, 35(13):29-36.
[84] 董文曙, 周焱, 王鑫. 放射性废树脂热态超压处理工艺评价[J]. 广州化工, 2017, 45(19):139-141.
[85] Karumalikkal A P, Schneider F, Scherer U W. Construction and testing of a closed microwave plasma oven system for the treatment of radioactive waste[J]. Radiation Effects & Defects in Solids, 2017, 172(1-2):139-149.
[86] Trnovcevic J, Schneider F, Scherer U W. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste[J]. Radiation Effects & Defects in Solids, 2017, 172(1-2):23-31.
[87] Xu L J, Wang J L. The application of graphene-based materi als for the removal of heavy metals and radionuclides from water and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(12):1042-1105.
[88] 马锋, 靳强, 高鹏元, 等. Np(V)在漳州伊利石上吸附作用的实验及建模研究[J]. 原子能科学技术, 2017, 51(5):790-797.
[89] 姜自超, 丁建华, 张时豪, 等. 水泥及其复合体系固化放射性核废物研究现状[J]. 当代化工, 2017, 46(1):141-144.
[90] 陈良, 吴雪松, 饶仲群,等. 放射性废物水泥固化桶外混合技术分析[J]. 核科学与工程, 2017, 37(3):386-392.
[91] 张怡, 郑佐西, 朱欣研,等. 放射性固体废物水泥砂浆固定配方研究[J]. 核化学与放射化学, 2017, 39(1):63-68.
[92] 王兰, 侯晨曦, 樊龙,等. 矿物固化含Sr、Cs放射性废物研究进展[J]. 材料导报, 2017, 31(2):106-111.
[93] 张帅. 放射性污染土壤的微波固化工艺及其效应评价[D]. 四川:西南科技大学, 2017.
[94] 刘博煜, 龚有进, 刘强,等. 新型多孔材料在惰性气体Xe/Kr分离中的应用[J]. 材料导报, 2017, 31(10):51-59.
[95] 艾明. 一种新型低放废物暂存工艺[J]. 中国核电, 2017, 10(1):114-118.
[96] 房江锋, 李小强. 华南某预选低-中放射性废物处置场地下水流模拟[J]. 土工基础, 2017, 31(3):304-307.
[97] 戴荧, 张安运. 杯
[4] 双冠醚的合成及分离高放废液中Cs的研究进展[J]. 湿法冶金, 2017, 36(2):83-90.
[98] Zhang A Y, Hu Q H. Removal of cesium by countercurrent solvent extraction with a calix
[4] crown derivative[J]. Separa tion Science and Technology, 2017, 52(10):1670-1679.
[99] Kwon S, Choi J, Cho S, et al. A novel method for separating Cs+ from liquid radioactive waste using ionic liquids and a se lective extractant[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(3):1605-1611.
[100] 徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7):481-488.
[101] Zhang Y J, Kong L G, Karatchevtseva I, et al. Development of brannerite glass-ceramics for the immobilization of ac tinide-rich radioactive wastes[J]. Journal of the American Ceramic Society, 2017, 100:4341-4351.
[102] Erenturk S A, Bengisu M, Erdogan C. Evaluation of sodium borate glasses for radioactive waste immobilization applica tions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017(1):1-18.
[103] 王铁山, 彭海波, 刘枫飞,等. 高放废物玻璃固化体的辐照效应研究进展[J]. 原子能科学技术, 2017, 51(6):967-974.
[104] 吴晓翠, 康明亮, 蔡智毅, 等. 北山地下水氧化还原电势及其对可变价核素迁移的影响[J]. 核化学与放射化学, 2017, 39(3):227-234.
[105] 仝跃, 黄宏伟, 张东明,等. 高放废物处置地下实验室建设期风险接受准则[J]. 中国安全科学学报, 2017, 27(2):151-156.
[106] 郑阳. 高放废物地质处置地下实验施工期风险评价与分析研究[D]. 山东:山东大学, 2017.
[107] 李兴军. 高放废物地质处置地下实验室施工开挖围岩稳定性分析研究[D]. 山东:山东大学, 2017,
[108] 罗辉, 王驹, 蒋实, 等. 高放废物地质处置地下实验室新场候选场址三维地质建模[J]. 铀矿地质, 2017, 33(3):178-183.
[109] 王驹, 凌辉, 陈伟明. 高放废物地质处置库安全特性研究[J]. 中国核电, 2017, 10(2):270-278.
[110] 贝新宇, 陈璋如. 国外高放废物地质处置库地下实验室环境监测与影响评价浅析[J]. 世界核地质科学, 2017, 34(3):180-186.
[111] 徐国庆. 高放废物分类处置的国际新动向[J]. 世界核地质科学, 2017, 34(2):118-124.
[112] 赵永安, 高敏, 高树桃, 等. 大数据在高放废物地质处置中的应用研究前瞻[J]. 铀矿地质, 2017, 33(1):59-64.
[113] 向霞, 万亚平, 何志爽, 等. 高放废物地质处置安全评价信息管理系统的设计与实现[J]. 电脑知识与技术, 2017, 13(14):9-10.
[114] 高敏, 黄树桃, 王鹏, 等. 高放废物地质处置数据资源集成开发进展[J]. 铀矿地质, 2017, 33(2):113-117.
[115] 张洪健, 余刃, 刘笑凡, 等. 基于嵌入式的乏燃料干储存温度监测系统[J]. 兵器装备工程学报, 2017, 38(11):138-141.
[116] 刘雅兰, 叶国安, 柴之芳, 等. 铝合金化技术在乏燃料干法后处理中的应用研究进展[J]. 核化学与放射化学, 2017, 39(1):13-21.
[117] 李佳, 康武, 尹荣才, 等. 超临界萃取从铀、锆、铌混合粉末中分离铀的试验研究[J]. 铀矿冶, 2017, 36(1):34-40.
[118] 沈姚崧, 李凯波, 师学明, 等. 聚变裂变混合堆处理高放超铀废物的研究[J]. 计算物理, 2017, 34(2):142-148.
[119] 刘琨, 秦东, 倪东洋. 长寿命裂变产物热堆嬗变可行性研究[J]. 科技创新与应用, 2017(11):22-24.
[120] 刘刈, 陈艳, 孔彦荣, 等. 超声波+四价铈去污技术研究[J]. 辐射防护, 2017, 37(1):39-44.
[121] 陈听雨. 电子束处理废水技术获突破[EB/OL].[2017-12-13]. http://news.xinhuanet.com/tech/2017-10/24/c_11218460-01.htm.
[122] 胡帮达. 中国核安全立法的进展、问题和对策[J]. 科技导报, 2017, 35(13):57-60.
Outlines

/