Spescial Issues

Emerging technique-cryo-electron microscopy:Commentary on the 2017 Nobel Prize for Chemistry

  • LEI Jianlin
Expand
  • School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 2017-11-01

  Revised date: 2017-11-24

  Online published: 2017-12-16

Abstract

The 2017 Nobel Prize for Chemistry was awarded to three scientists (Jacques Dubochet, Joachim Frank and Richard Henderson) for developing cryo-electron microscopy for high-resolution structure determination of biomolecules in solutions. In this paper their work on the development of cryo-electron microscopy technique is briefly introduced and an outlook for the future development of this technique is also presented.

Cite this article

LEI Jianlin . Emerging technique-cryo-electron microscopy:Commentary on the 2017 Nobel Prize for Chemistry[J]. Science & Technology Review, 2017 , 35(23) : 22 -27 . DOI: 10.3981/j.issn.1000-7857.2017.23.003

References

[1] Liao M F, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478):107-112.
[2] Cao E, Liao M F, Cheng Y F, et al. TRPV1 structures in distinct conformations reveal activation mechanisms[J]. Nature, 2013, 504(7478):113-118.
[3] DeRosier D J, Klug A. Reconstruction of 3 dimensional structures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[4] Taylor K A, Glaeser R M. Electron-diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[5] Dubochet J, Lepault J, Freeman R, et al. Electron-microscopy of frozen water and aqueous-solutions[J]. Journal of Microscopy-Oxford, 1982, 128(3):219-237.
[6] Adrian M, Dubochet J, Lepault J, et al. Cryo-electron microscopy of viruses[J]. Nature, 1984, 308(5954):32-36.
[7] Henderson R, Unwin P N T. 3-dimensional model of purple membrane obtained by electron-microscopy[J]. Nature,1975, 257(5521):28-32.
[8] Frank J. Three-dimensional electron microscopy of macromolecular assemblies[M]. New York:Oxford University Press, 2006.
[9] Frank J, Shimkin B, Dowse H. SPIDER-A modular software system for electron image-processing[J]. Ultramicroscopy, 1981, 6(1):343-357.
[10] Henderson R, Baldwin J M, Ceska T A. Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy[J]. Journal of Molecular Biology, 1990, 213(4):899-929.
[11] Henderson R. The potential and limitations of neutrons, electrons and x-rays for atomic-resolution microscopy of unstained biological molecules[J]. Quarterly Reviews of Biophysics, 1995, 28(2):171-193.
[12] Henderson R. Realizing the potential of electron cryo-microscopy[J]. Quarterly Reviews of Biophysics, 2004, 37(1):3-13.
[13] Scheres SHW. RELION:Implementation of a bayesian approach to cryo-EM structure determination[J]. Journal of Structural Biology, 2012, 180(3):519-530.
[14] Zhang X, Settembre E C, Xu C, et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6):1867-1872.
[15] Yu X K, Jin L, Zhou Z H. 3.88 angstrom structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy[J]. Nature, 2008, 453(7193):415-419.
[16] Zhang X, Jin L, Fang Q, et al. 3.3 angstrom cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry[J]. Cell, 2010,141(3):472-482.
[17] Milazzo A, Cheng A C, Moeller A, et al. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy[J]. Journal of Structural Biology, 2011, 176(3):404-408.
[18] Li X M, Monner P, Zheng S Q, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM[J]. Nature Methods, 2013, 10(6):584-590.
[19] Bai X C, Fernandez IS, McMullan G, et al. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles[J]. eLife, 2013, 2, doi:10.7554/eLife.00461.
[20] Yan C Y, Hang J, Wan R X, et al. Structure of a yeast spliceosome at 3.6-angstrom resolution[J]. Science, 2015, 349(6253):1182-1191.
[21] Hang J, Wan R X, Yan C Y, et al. Structural basis of pre-mRNA splicing[J]. Science, 2015, 349(6253):1191-1198.
[22] Wan R X, Yan C Y, Bai R, et al. The 3.8 angstrom structure of the U4/U6.U5 tri-snRNP:Insights into spliceosome assembly and catalysis[J]. Science, 2016, 351(6272):466-475.
[23] Wan R X, Yan C Y, Bai R, et al. Structure of a yeast catalytic step I spliceosome at 3.4 angstrom resolution[J]. Science, 2016, 353(6302):895-904.
[24] Yan C Y, Wan R X, Bai R, et al. Structure of a yeast activated spliceosome at 3.5 angstrom resolution[J]. Science, 2016, 353(6302):904-911.
[25] Yan C Y, Wan R X, Bai R, et al. Structure of a yeast step Ⅱ catalytically activated spliceosome[J]. Science, 2017, 355(6321):149-155.
[26] Wan R X, Yan C Y, Bai R, et al. Structure of an intron lariat spliceosome from saccharomyces cerevisiae[J]. Cell, 2017, 171(1):120-132.
[27] Bai R, Yan C Y, Wan R X, et al. Structure of the post-catalytic spliceosome from saccharomyces cerevisiae[J]. Cell, 2017, doi:org/10.1016/j.cell.2017.10.038.
[28] Zhang X F, Yan C Y, Hang J, et al. An atomic structure of the human spliceosome[J]. Cell, 2017, 169(5):918-929.
[29] Zhang J, Ma J F, Liu D S, et al. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678):57-63.
[30] Wu J P, Yan Z, Li Z Q, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 complex[J]. Science, 2015, 350(6267):2395.
[31] Wu J, Yan Z, Qian X, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 angstrom resolution[J]. Nature, 2016, 537(7619):191-196.
[32] Gong X, Qian H W, Zhou X H, et al. Structural insights into the niemann-pick C1(NPC1)-mediated cholesterol transfer and ebola infection[J]. Cell, 2016, 165(6):1467-1478.
[33] Peng W, Shen H Z, Wu J P, et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2[J]. Science, 2016, 354(16):5324.
[34] Shen H Z, Zhou Q, Pan X J, et al. Structure of a eukaryotic voltagegated sodium channel at near-atomic resolution[J]. Science, 2017, doi:10.1126/science.aal4326.
[35] Qian H W, Zhao X, Cao P P, et al. Structure of the human lipid exporter ABCA1[J]. Cell, 2017, 169(7):1228-1239.
[36] Yan Z, Zhou Q, Wang L, et al. Structure of the Na(v)1.4-beta 1 complex from electric eel[J]. Cell, 2017, 170(3):470-482.
[37] Gu J, Wu M, Guo R Y, et al. The architecture of the mammalian respirasome[J]. Nature, 2016, 537(7622):639-643.
[38] Wu M, Gu J, Guo R Y, et al. Structure of mammalian respiratory supercomplex I1Ⅲ2IV1[J]. Cell, 2016, 167(6):1598-1609.
[39] Guo R Y, Zong S, Wu M, et al. Architecture of human mitochondrial respiratory megacomplex I2Ⅲ2IV2[J]. Cell, 2017, 170(6):1247-1257.
[40] Song F, Chen P, Sun D P, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units[J]. Science, 2014, 344(6182):376-380.
[41] Wei X, Su X, Cao P, et al. Structure of spinach photosystem Ⅱ-LHCⅡ supercomplex at 3.2 angstrom resolution[J]. Nature, 2016, 534(7605):69-74
[42] Su X D, Ma J, Wei X P, et al. Structure and assembly mechanism of plant C2S2M2-type PSⅡ-LHCⅡ supercomplex[J]. Science, 357(6353):815-820.
[43] Wang X J, Ran T T, Zhang X, et al. 3.9Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP[J]. Science, 358(6367):1206-1209.
[44] Fan X, Zhao L Y, Liu C, et al. Near-atomic resolution structure determination in over-focus with volta phase plate by Cs-corrected cryoEM[J]. Structure, 2017, 25(10):1623-1630.
[45] Wang F, Gong H C, Liu C C, et al. DeepPicker:A deep learning approach for fully automated particle picking in cryo-EM[J]. Journal of Structural Biology, 2016,195(3):325-336.
[46] Zhou N, Wang H, Wang J. EMBuilder:A template matching-based automatic model-building program for high-resolution cryo-electron microscopy maps[J]. Scientific Reports, 2017, 7(1):2664.
[47] Lei J L, Frank J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope[J]. Journal of Structural Biology, 2005, 150(1):69-80.
[48] Li S G, Ji G, Shi Y, et al. High-vacuum optical platform for cryoCLEM (HOPE):A new solution for non-integrated multiscale correlative light and electron microscopy[J]. Journal of Structural Biology, 2017, doi:org/101016/j.jsb.2017.11.002.
[49] Li X X, Ji G, Chen X, et al. Large scale three-dimensional reconstruction of an entire Caenorhabditis elegans larva using AutoCUTS-SEM[J]. Journal of Structural Biology, 2017, 200(2):87-96.
[50] Zhang J G, Ji G, Huang X J, et al. An improved cryo-FIB method for fabrication of frozen hydrated lamella[J]. Journal of Structural Biology, 2016, 194(2):218-223.
[51] Chen Y, Zhang Y, Zhang K, et al. FIRT:Filtered iterative reconstruction technique with information restoration[J]. Journal of Structural Biology, 2016, 195(1):49-61.
[52] Deng Y C, Chen Y, Zhang Y, et al. ICON:3D reconstruction with ‘missing-information’ restoration in biological electron tomography[J]. Journal of Structural Biology, 2016, 195(1):100-112.
[53] Han R M, Wan X H, Wang Z H, et al. AuTom:A novel automatic platform for electron tomography reconstruction[J]. Journal of Structural Biology, 2017, 199(3):196-208.
[54] Liu H R, Cheng L P. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus[J]. Science, 2015, 349(6254):1347-1350.
Outlines

/