[1] Ehrenberg M. Scientific background on the Nobel Prize in Chemistry 2014[EB/OL]. Super-resolved fluorescence microscopy 2014. www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/advanced-chemistryprize2014.pdf.
[2] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals threedimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 2012, 9(2):185-188.
[3] Gosta Ekspong G. Physics 1981-1990[M]. World Scientific, 1993.
[4] Taylor K A, Glaeser R M. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future[J]. Journal of Structural Biology, 2008, 163(3):214-223.
[5] Parsons D. Structure of wet specimens in electron microscopy[J]. Science, 1974, 186(4162):407-414.
[6] Henderson R, Unwin P N. Three-dimensional model of purple membrane obtained by electron microscopy[J]. Nature, 1975, 257(5521):28-32.
[7] Taylor K A, Glaeser R M. Electron diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[8] Dubochet J, McDowall A. Vitrification of pure water for electron microscopy[J]. Journal of Microscopy, 1981, 124(3):3-4.
[9] Adrian M, Dubochet J, Lepault J, et al. Cryo-electron microscopy of viruses[J]. Nature, 1984, 308(5954):32-36.
[10] Henderson R, Raeburn C, Vigers G. A side-entry cold holder for cryoelectron microscopy[J]. Ultramicroscopy, 1991, 35(1):45-53.
[11] Fujiyoshi Y, Morikawa K, Mizusaki T, et al. Cryo-electron microscopy (V)-development of superfluid-helium stage for hrem[J]. Journal of Electron Microscopy, 1988, 37(5):258-259.
[12] Kume N, Fujiyoshi Y. 2 morphologically distinct architectures of envelopes in influenza-virus elucidated under liquid helium-cooled cryostage[J]. Journal of Electron Microscopy, 1988, 37(5):259.
[13] De Rosier D, Klug A. Reconstruction of three dimensional structures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[14] Crowther R, DeRosier D J, Klug A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy[J]. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1970, 317(1530):319-340.
[15] Crowther R, Amos L A, Finch J, et al. Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs[J]. Nature, 1970, 226(5244):421-425.
[16] Henderson R, Baldwin J M, Ceska T A, et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy[J]. Journal of Molecular Biology, 1990, 213(4):899-929.
[17] Unwin N. Nicotinic acetylcholine receptor an 9Å resolution[J]. Journal of Molecular Biology, 1993, 229(4):1101-1124.
[18] Frank J. Averaging of low exposure electron micrographs of non-periodic objects[J]. Ultramicroscopy, 1975, 1(2):159-162.
[19] Frank J, Al-Ali L. Signal-to-noise ratio of electron micrographs obtained by cross correlation[J]. Nature, 1975, 256(5516):376-379.
[20] Saxton W, Frank J. Motif detection in quantum noise-limited electron micrographs by cross-correlation[J]. Ultramicroscopy, 1976, 2:219-227.
[21] Frank J, Goldfarb W, Eisenberg D, et al. Reconstruction of glutamine synthetase using computer averaging[J]. Ultramicroscopy, 1978, 3(3):283-290.
[22] Van Heel M, Frank J. Use of multivariate statistics in analysing the images of biological macromolecules[J]. Ultramicroscopy, 1981, 6(2):187-194.
[23] Frank J, Van Heel M. Correspondence analysis of aligned images of biological particles[J]. Journal of Molecular Biology, 1982, 161(1):134-137.
[24] Ludtke S J, Baldwin P R, Chiu W. EMAN:Semiautomated software for high-resolution single-particle reconstructions[J]. Journal of Structural Biology, 1999, 128:82-97.
[25] Böttcher B, Wynne S, Crowther R. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy[J]. Nature,386(6620):88-91.
[26] Conway J, Cheng N, Zlotnick A, et al. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo electron microscopy[J]. Nature, 1997, 386:91-94.
[27] Zhang X, Settembre E C, Xu Chen,et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction[J]. Proceedings of the National Academy of Sciences, 2008, 105(6):1867-1872.
[28] Yu X, Jin L, Zhou Z H. 3.88Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy[J]. Nature, 2008, 453(7193):415-419.
[29] Jiang W, Baker M, Jakana J, et al. Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy[J]. Nature, 2008, 451(7182):1130-1134.
[30] Krivanek O, Mooney P. Applications of slow-scan CCD cameras in transmission electron microscopy[J]. Ultramicroscopy, 1993, 49:95-108.
[31] Potter C S, Chu H H, Frey B, et al. Leginon:A system for fully automated acquisition of 1000 electron micrographs a day[J]. Ultramicroscopy, 1999, 77:153-16
[32] Mastronarde D N. SerialEM a program for automated tilt series acquisition on tecnai microcopes using prediction of specimen position[J]. Microscopy & Microanalysis, 2003, 9:1182-1183.
[33] Lei J L, Frank J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope[J]. Journal of Structural Biology, 2005, 150(1):69-80.
[34] Faruqi A R, Henderson R, Pryddetch M, et al. Direct single electron detection with a CMOS detector for electron microscopy[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 546(1):170-175.
[35] Milazzo A, Leblanc P C, Duttweiler F, et al. Active pixel sensor array as a detector for electron microscopy[J]. Ultramicroscopy, 2005, 104(2):152-159.
[36] Milazzo A, Cheng A, Moeller A, et al. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy[J]. Journal of Structural Biology, 2011, 176(3):404-408.
[37] Brilot A F, Chen J Z, Cheng, et al. Beam-induced motion of vitrified specimen on holey carbon film[J]. Journal of structural biology, 2012, 177(3):630-637.
[38] Li X M, Mooney P, Zheng S Q, et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM[J]. Nature Methods, 2013, 10(6):584-590
[39] Bai X C, Fernandez I S, McMullan G, et al. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles[J]. eLife, 2013, 2:e00461.
[40] Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478):107-112.
[41] Cao E, Liao M, Cheng Y F, et al. TRPV1 structures in distinct conformations reveal activation mechanisms[J]. Nature, 2013, 504(7478):113-118.
[42] Scheres S H W. RELION:Implementation of a bayesian approach to cryo-EM structure determination[J]. Journal of Structural Biology, 2012, 180(3):519-530.
[43] Sigworth F J. A maximum-likelihood approach:To single particle image refinement[J]. Journal of Structural Biology, 1998, 122:328-339.
[44] Hang J, Wan R X, Yan C Y, et al. Structural basis of pre-mRNA splicing[J]. Science, 2015, 349(6253):1191-1198.
[45] Wei X P, Su X D, Cao P, et al. Structure of spinach photosystem ⅡLHCⅡ supercomplex at 3.2Å resolution[J]. Nature, 2016, 534(7605):69-74.
[46] Guo R Y, Zong S, Wu M, et al. Architecture of human mitochondrial respiratory megacomplex I2Ⅲ2IV2[J]. Cell, 2017,170(6):1247-1257.
[47] Zhang J, Ma J F, Liu D S. Structure of phycobilisome from the red alga Griffithsia pacifica[J]. Nature, 2017, 551(7678):57-63.
[48] Merk A, Bartesaghi A, Banerjee S, et al. Breaking cryo-EM resolution barriers to facilitate drug discovery[J]. Cell, 2016, 165(7):1698-1707.
[49] Khoshouei M, Radjainia M, Baumeister W et al. Cryo-EM structure of haemoglobin at 3.2Å determined with the Volta phase plate[J]. Nature Communications, 2017, doi:10.1038/ncomms16099.
[50] Schur F K M, Obr M, Hagen W J H, et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation[J]. Science, 2016, 353(6298):506-508.