Articles

Preparation of the magnetotactic wood through the biomimetic mineralization for application in electromagnetic wave absorption

  • WANG Hanwei ,
  • SUN Qingfeng ,
  • SHENG Chengmin ,
  • YANG Ning
Expand
  • 1. School of Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China;
    2. Key Laboratory of Wood Science and Technology of Zhejiang Province, Hangzhou 311300, China

Received date: 2017-01-26

  Revised date: 2017-10-20

  Online published: 2017-11-29

Abstract

Based on the principle of the biomimetic mineralization and with the aspartic acid as the biomolecule inducer, the magnetotactic wood is prepared through the deposition of the MnFe2O4 crystal on the wood surface via the solvothermal method at low temperature. The asprepared wood is characterized by the X-ray diffraction (XRD), the scanning electron microscopy (SEM), the Fourier transform infrared spectroscopy (FT-IR), the vibrating sample magnetometer (VSM) and the vector network analysis (VNA). The results show that the magnetic MnFe2O4 could be deposited on the wood surface to form the magnetotactic wood induced by the aspartic acid under the alkaline solvothermal mineralization at low temperature. A minimum reflection loss of the magnetotactic wood is-12 dB at 15.52 GHz. Simultaneously, the RL is below-12 dB ranging from 14 to 17 GHz. Therefore, the magnetotactic wood would find a great potential application for preventing the indoor electromagnetic wave pollution.

Cite this article

WANG Hanwei , SUN Qingfeng , SHENG Chengmin , YANG Ning . Preparation of the magnetotactic wood through the biomimetic mineralization for application in electromagnetic wave absorption[J]. Science & Technology Review, 2017 , 35(22) : 71 -76 . DOI: 10.3981/j.issn.1000-7857.2017.22.009

References

[1] 李坚. 木材科学[M]. 北京:高等教育出版社, 2002. Li Jian. Wood science[M]. Beijing:Higher Education Press, 2002.
[2] 李坚. 木材的生态学属性——木材是绿色环境人体健康的贡献者[J]. 东北林业大学学报, 2010, 38(5):1-8. Li Jian. Ecological properties of wood:Wood as the contributor to the green environment and human health[J]. Journal of Northeast Forestry University, 2010, 38(5):1-8.
[3] 刘一星, 于海鹏, 赵荣军. 木质环境学[M].北京:科学出版社, 2007. Liu Yixing, Yu Haipeng, Zhao Rongjun. Science of wooden environment[M]. Beijing:Higher Education Press, 2007.
[4] Oka H, Hojo A, Seki K, et al. Wood construction and magnetic characteristics of impregnated type magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2002, 239(1-3):617-619.
[5] Oka H, Hojo A, Osada H, et al. Manufacturing methods and magnetic characteristics of magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2004, 272(3):2332-2334.
[6] 房岩, 孙刚, 丛茜, 等. 仿生材料学研究进展[J]. 农业机械学报, 2006, 37(11):163-167. Fang Yan, Sun Gang, Cong Qian, et al. Advances in researches on biomimetic materials[J]. Transactions of The Chinese Society of Agricultural Machinery. 2006, 37(11):163-167.
[7] 漆超, 朱英杰, 吴进, 等. 磷酸钙纳米材料的制备, 性能及应用[J]. 科技导报, 2015, 33(4):111-119. Qi Chao, Zhu Yingjie, Wu Jin, et al. Preparation, properties and applications of calcium phosphate nanostructured materials[J]. Science & Technology Review, 2015, 33(4):111-119.
[8] Gu J, Zhang W, Su H, et al. Morphology genetic materials templated from natural species[J]. Advanced Materials, 2015, 27(3):464-478.
[9] Sun Y, Sills R B, Hu X, et al. A bamboo-Inspired nanostructure design for flexible, foldable, and twistable energy storage devices[J]. Nano Letters, 2015, 15(6):3899-3906.
[10] Xu B, Hong C, Zhang X, et al. Nanostructured hybrid carbon nanotube/ultrahigh-temperature ceramic heterostructures:Microstructure evolution and forming mechanism[J]. Journal of The American Ceramic Society, 2015, 98(12):3699-3705.
[11] Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1):23-36.
[12] Wan S, Li Y, Peng J, et al. Synergistic toughening of graphene oxidemolybdenum disulfide-thermoplastic polyurethane ternary artificial nacre[J]. ACS Nano, 2015, 9(1):708-714.
[13] Ferrand H, Bouville F, Niebel T, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites[J]. Nature Materials, 2015, 14(11):1172-1179.
[14] Rising A, Johansson J. Toward spinning artificial spider silk[J]. Nature Chemical Biology, 2015, 11(5):309-315.
[15] Blakemore R. Magnetotactic bacteria[J]. Science, 1975, 190(4212):377-379.
[16] Sun G, Dong B, Cao M, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J]. Chemistry of Materials, 2011, 23(6):1587-1593.
[17] Wang H, Yao Q, Wang C, et al. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood[J]. Scientific Reports, 2016, 6:35549.
[18] Wang H, Wang C, Xiong Y, et al. Solvothermal fabrication and growth behavior study of spherical MnFe2O4 through a bottom-up method on wood substrate with effective microwave absorption[J]. RSC Advances, 2017, 7(40):24764-24770.
[19] 李坚, 吴玉章, 马岩. 功能性木材[M]. 北京:科学出版社, 2011. Li Jian, Wu Yuzhang, Ma Yan. Functional wood[M]. Beijing:Science Press. 2011.
Outlines

/