Spescial Issues

Discovery based on hunger sensation comes from gut flora:Breakthrough in chronic disease prevention and control

  • ZHANG Chenggang ,
  • GONG Wenjing
Expand
  • Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Research Center for the Military Cognitive and MentalHealth of PLA, Beijing 100850, China

Received date: 2017-08-10

  Revised date: 2017-10-10

  Online published: 2017-11-16

Abstract

Even in nowadays chronic diseases are still an obstacle to the healthy development of human society. It is an urgent need to find a scientific yet effective way to control chronic diseases. Despite the great progress made by life science and modern medicine, the current situation of high incidence of chronic diseases suggests that we should adopt and develop a new, even subversive thinking mode, to rethink the etiology of chronic diseases in order to assist humans to across the gully and health problem of chronic disease. Based on a long-term scientific research, we have obtained some new discoveries, such as "hunger sensation comes from gut flora" and "chronic disease comes from gut flora" on the basis of the formation of "gut flora-centric theory" together with its corresponding technology, which will bring a breakthrough to the chronic disease prevention and health management. In this paper, we will explore this new theory, provide new understanding of the origin of the chronic disease, and propose corresponding strategies and solutions for chronic diseases. Compared with the traditional Chinese medicine based on "harmony between man and nature" and the western medicine that advocates "chronic diseases come from abnormal human genes", our studies emphasize on "abnormal gut flora (caused by human genetic abnormalities) new medical system leading to chronic diseases" under the framework of gut flora-centric theory.

Cite this article

ZHANG Chenggang , GONG Wenjing . Discovery based on hunger sensation comes from gut flora:Breakthrough in chronic disease prevention and control[J]. Science & Technology Review, 2017 , 35(21) : 43 -48 . DOI: 10.3981/j.issn.1000-7857.2017.21.005

References

[1] 全国人民代表大会常务委员会. 中华人民共和国中医药法[EB/OL].[2016-12-25]. http://www.npc.gov.cn/npc/xinwen/2016-12/25/content_2004972.htm. The Standing Committee of the National People's Congress. The law of the People's Republic of China on Chinese medicine[EB/OL].[2016-12-25]. http://www.npc.gov.cn/npc/xinwen/2016-12/25/content_2004972.htm.
[2] 张成岗. 当前慢病防控困境迫切呼唤新医学和菌心说[J]. 科技导报, 2015, 33(22):106-111. Zhang Chenggang. New medicine and bacteriocentric theory and a revolution in prevention and control of chronic diseases[J]. Science & Technology Review, 2015, 33(22):106-111.
[3] 张成岗. 新医学·菌心说·云医院[M]. 北京:中医古籍出版社, 2016. Zhang Chenggang. New medicine, gut flora-centric theory and cloud hospital[M]. Beijing:The Ancient Books Publishing House on Traditional Chinese Medicine, 2016.
[4] 强伯勤, 方福德. 中国人类基因组研究的现在与未来[J]. 生物化学与生物物理进展, 2000, 27(5):455-460. Qiang Boqin, Fang Fude. Present and future of Chinese human genome research[J]. Progress in Biochemistry and Biophysics, 2000, 27(5):455-460.
[5] Bleimann G, Stark E L. Finishing the euchromatic sequence of the hu-man genome[J]. Nature, 2004, 431(7011):931-945.
[6] Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual.[J]. Nature, 2008, 456(7218):60-65.
[7] Butler D. Human genome at ten:Science after the sequence[J]. Nature, 2010, 465(7301):1000-1001.
[8] Steinberg M H, 任兆瑞. 地中海贫血:分子机理的新进展[J]. 国际遗传学杂志, 1983(2):77-80. Steinberg M H, Ren Zhaohui. Thalassemia:Recent advances in molecular mechanisms[J]. International Journal of genetics. 1983(2):77-80.
[9] 杨仁池, 王鸿利. 血友病[M]. 上海:上海科学技术出版社, 2007. Yang Renchi, Wang Hongli. Hemophilia[M]. Shanghai:Shanghai Science and Technology Press, 2007.
[10] Beale E G, Harvey B J, Forest C. PCK1 and PCK2 as candidate diabe-tes and obesity genes[J]. Cell Biochemistry and Biophysics, 2007, 48(2/3):89-95.
[11] Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human[J]. Na-ture, 2012, 483(7389):350-354.
[12] Pigeyre M, Yazdi F T, Kaur Y, et al. Recent progress in genetics, epi-genetics and metagenomics unveils the pathophysiology of human obe-sity[J]. Clinical Science, 2016, 130(12):943-986.
[13] Rafiq S, Anand S, Roberts R. Genome-wide association studies of hy-pertension:Have they been fruitful[J]. Journal of Cardiovascular Trans-lational Research, 2010, 3(3):189-196.
[14] Xu Y, Chen M, Liu C, et al. Association study confirmed three breast cancer-specific molecular subtype-associated susceptibility loci in Chinese Han women[J]. The Oncologist, 2017, 22(8):890-894.
[15] 张成岗. 人体微生态尤其是肠道微生态为新药研发提供前所未有的机遇和挑战[J]. 中国药理学与毒理学杂志, 2016, 30(7):703-713. Zhang Chenggang. Human microecology, especially gut microflora provides unprecedented opportunities and challenges for new drug research and development[J]. Chinese Journal of Pharmacology and Toxicology, 2016, 30(7):703-713.
[16] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue es-tablished by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[17] Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environ-mental factor that regulates fat storage[J]. PNAS, 2004, 101(44):15718-15723.
[18] Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
[19] Ridaura V K, Faith J J, Rey F E, et al. Gut microbiota from twins dis-cordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150):1241214.
[20] Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. The ISME Journal, 2013, 7(4):880-884.
[21] Alang N, Kelly C R. Weight gain after fecal microbiota transplantation[C]. Open Forum Infectious Diseases. Oxford:Oxford University Press, 2015, 2(1):ofv004.
[22] Ley R E, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. PNAS, 2005, 102(31):11070-11075.
[23] Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology-Human gut microbes associated with obesity[J]. Nature, 2006, 444(7122):1022-1023.
[24] Ley R E. Obesity and the human microbiome[J]. Current Opinion in Gastroenterology, 2010, 26(1):5-11.
[25] Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402):207-214.
[26] Sanz Y, Rastmanesh R, Agostoni C. Understanding the role of gut mi-crobes and probiotics in obesity:How far are we?[J]. Pharmacological Research, 2013, 69(1):144-155.
[27] Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut micro-biome correlates with metabolic markers[J]. Nature, 2013, 500(7464):541-546.
[28] Goodrich J K, Waters J L, Poole A C, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4):789-799.
[29] Saad M J, Santos A, Prada P O. Linking gut microbiota and inflamma-tion to obesity and insulin resistance[J]. Physiology, 2016, 31(4):283-93.
[30] Nova E, de Heredia F P, Gomez-Martinez S, et al. The role of probiot-ics on the microbiota:Effect on obesity[J]. Nutrition in Clinical Prac-tice, 2016, 31(3):387-400.
[31] Nehra V, Allen J M, Mailing L J, et al. Gut microbiota:Modulation of host physiology in obesity[J]. Physiology, 2016, 31(5):327-335.
[32] John G K, Mullin G E. The gut microbiome and obesity[J]. Current On-cology Reports, 2016, 18(7):45.
[33] Isolauri E, Salminen S, Rautava S. Early microbe contact and obesity risk:Evidence of causality[J]. Journal of Pediatric Gastroenterology and Nutrition. 2016, 63(Suppl1):S3-5.
[34] Compare D, Rocco A, Sanduzzi Zamparelli M, et al. The gut bacteriadriven obesity development[J]. Digestive Diseases, 2016, 34(3):221-229.
[35] Martel J, Ojcius D M, Chang C J, et al. Anti-obesogenic and antidia-betic effects of plants and mushrooms[J]. Nature Reviews Endocrinolo-gy, 2017, 13(3):149-160.
[36] Stock J. Gut microbiota:An environmental risk factor for cardiovascu-lar disease[J]. Atherosclerosis, 2013, 229(2):440-442.
[37] Mima K, Nakagawa S, Sawayama H, et al. The microbiome and hepato-biliary-pancreatic cancers[J]. Cancer Letters, 2017, 402:9-15.
[38] Weber G J, Pushpakumar S, Tyagi S C, et al. Homocysteine and hydro-gen sulfide in epigenetic, metabolic and microbiota related renovascu-lar hypertension[J]. Pharmacological Research, 2016, 113:300-312.
[39] Khan M T, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity[J]. Cell Metabolism, 2014, 20(5):753-760.
[40] Devlin A S, Marcobal A, Dodd D, et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota[J]. Cell Host & Microbe, 2016, 20(6):709-715.
[41] Honour J W. Historical perspective:Gut dysbiosis and hypertension[J]. Physiological Genomics, 2015, 47(10):443-446.
[42] Al Khodor S, Shatat I F. Gut microbiome and kidney disease:A bidi-rectional relationship[J]. Pediatric Nephrology, 2017, 32(6):921-931.
[43] Durgan D J, Ganesh B P, Cope J L, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension novelty and signifi-cance[J]. Hypertension, 2016, 67(2):469-474.
[44] Gomez-Arango L F, Barrett H L, McIntyre H D, et al. Increased sys-tolic and diastolic blood pressure is associated with altered gut micro-biota composition and butyrate production in early pregnancy novelty and significance[J]. Hypertension, 2016, 68(4):974-981.
[45] Tilg H, Moschen A R. Microbiota and diabetes:An evolving relation-ship[J]. Gut, 2014, 63(9):1513-1521.
[46] Hansen T H, Gøbel R J, Hansen T, et al. The gut microbiome in car-dio-metabolic health[J]. Genome Medicine, 2015, 7(1):33.
[47] Ryan P M, London L E E, Bjorndahl T C, et al. Microbiome and me-tabolome modifying effects of several cardiovascular disease interven-tions in apo-E-/-mice[J]. Microbiome, 2017, 5(1):30.
[48] Lopetuso L R, Petito V, Zambrano D, et al. Gut microbiota:A key modulator of intestinal healing in inflammatory bowel disease[J]. Di-gestive Diseases, 2016, 34(3):202-209.
[49] Briskey D, Tucker P, Johnson D W, et al. The role of the gastrointesti-nal tract and microbiota on uremic toxins and chronic kidney disease development[J]. Clinical and Experimental Nephrology, 2017, 21(1):7-15.
[50] Zabell A, Tang W H W. Targeting the microbiome in heart failure[J]. Current Treatment Options in Cardiovascular Medicine, 2017, 19(4):1-12.
[51] Mielcarz D W, Kasper L H. The gut microbiome in multiple sclerosis[J]. Current Treatment Options in Neurology, 2015, 17(4):1-10.
[52] Dingemanse C, Belzer C, van Hijum S A F T, et al. Akkermansia mu-ciniphila and Helicobacter typhlonius modulate intestinal tumor devel-opment in mice[J]. Carcinogenesis, 2015, 36(11):1388-1396.
[53] Nguyen C, Nguyen V D. Discovery of azurin-like anticancer bacterio-cins from human gut microbiome through homology modeling and mo-lecular docking against the tumor suppressor p53[J]. BioMed Re-search International, 2016.
[54] Tao X, Wang N, Qin W. Gut microbiota and hepatocellular carcinoma[J]. Gastrointestinal Tumors, 2015, 2(1):33-40.
[55] Goel A, Gupta M, Aggarwal R. Gut microbiota and liver disease[J]. Journal of Gastroenterology and Hepatology, 2014, 29(6):1139-1148.
[56] Sanduzzi Zamparelli M, Compare D, Coccoli P, et al. The metabolic role of gut microbiota in the development of nonalcoholic fatty liver disease and cardiovascular disease[J]. International Journal of Molecu-lar Sciences, 2016, 17(8):1225.
[57] Yamashiro K, Tanaka R, Urabe T, et al. Correction:Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J]. PloS One, 2017, 12(4):e0176062.
[58] Dalmasso G, Cougnoux A, Delmas J, et al. The bacterial genotoxin co-libactin promotes colon tumor growth by modifying the tumor microen-vironment[J]. Gut Microbes, 2014, 5(5):675-680.
[59] Carding S, Verbeke K, Vipond D T, et al. Dysbiosis of the gut microbi-ota in disease[J]. Microbial ecology in health and disease, 2015, 26(1):26191-26200.
[60] Trøseid M, Hov J R, Nestvold T K, et al. Major increase in microbio-ta-dependent proatherogenic metabolite TMAO one year after bariat-ric surgery[J]. Metabolic Syndrome and Related Disorders, 2016, 14(4):197-201.
[61] Tremaroli V, Bäckhed F. Functional interactions between the gut mi-crobiota and host metabolism[J]. Nature, 2012, 489(7415):242-249.
[62] Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders[J]. Nature Reviews Nephrolo-gy, 2016, 12(3):169-181.
[63] Ling Z, Liu X, Cheng Y, et al. Decreased diversity of the oral microbi-ota of patients with hepatitis B virus-induced chronic liver disease:A pilot project[J]. Scientific Reports, 2015, 5:17098.
[64] Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Molecular Psychiatry, 2016, 21(6):786-796.
[65] 段云峰, 吴晓丽, 金锋. 自闭症的病因和治疗方法研究进展[J]. 中国科学:生命科学, 2015, 45(9):820-844. Duan Yunfeng, Wu Xiaoli, Jin Feng. Progress in the etiology and treatment of autism[J]. Science of China:Life Sciences, 2015, 45(9):820-844.
[66] 罗佳, 金锋. 肠道菌群影响宿主行为的研究进展[J]. 科学通报, 2014, 59(22):2169-2190. Luo Jia, Jin Feng. Research progress of intestinal flora affecting host behavior[J]. Science Bulletin, 2014, 59(22):2169-2190
[67] 梁姗, 王涛, 胡旭, 等. 微生物与行为和精神疾病[J]. 心理科学进展, 2012, 20(1):75-97. Liang Shan, Wang Tao, Hu Xu, et al. Progress in microbiology and behavioral and mental disorders[J]. Advances in Psychological Science, 2012, 20(1):75-97.
[68] 胡旭, 王涛, 金锋. 阿尔茨海默病与肠道微生物[J]. 中国科学:生命科学, 2016, 46(10):1174-1191. Hu Xu, Wang Tao, Jin Feng. Alzheimer's disease and intestinal microbiota[J]. Chinese Science:Life Sciences, 2016, 46(10):1174-1191
[69] 马丁·布莱泽. 消失的微生物:滥用抗生素引发的健康危机[M]. 傅贺, 译. 长沙:湖南科学技术出版社, 2016. Martin Blazer. Vanishing microorganism:Health crisis caused by abuse of antibiotics[M]. Fu He, trans. Changsha:Hunan Science and Technology Press, 2016.
[70] 黄清健, 滕淑珍, 高大文, 等. 灾害救援中柔性辟谷提高救援效率的应急方案[J]. 灾害医学与救援(电子版), 2015, 4(2):81-85. Huang Qingjian, Teng Shuzhen, Gao Dawen, et al. Emergency plans of flexible abrosia to raise efficiency in disaster rescue[J]. Disaster Medicine and Rescue(Electronic Edition), 2015, 4(2):81-85.
[71] 巩文静, 黄清健, 高大文, 等. 柔性辟谷技术在青年人群体重控制中的应用[J]. 军事医学, 2016, 40(8):651-656. Gong Wenjing, Huang Qingjian, GAO Dawen, et al. Application of flexible abrosia for body weight control among youths[J]. Military Medicine, 2016, 40(8):651-656.
Outlines

/