Spescial Issues

A review of radar sea target recognition technology

  • HE Zhihua ,
  • DUAN Jia ,
  • LU Da
Expand
  • AVIC Leihua Electronic Technology Research Institute, Wuxi 214063, China

Received date: 2017-09-25

  Revised date: 2017-10-10

  Online published: 2017-10-31

Abstract

The lack of feature data and the poor extending capability of the radar target recognition algorithms are two main problems for the radar sea target recognition, which have attracted many researches. This paper reviews the studies of the radar sea target recognition in two aspects, namely, the electro-magnetic modeling and the radar target classification algorithms. For the analysis of sea target electromagnetic behaviors, the review is focused on both the measurement and the modeling of the electro-magnetic scattering. For the radar sea target recognition technologies, the review covers the methods based on the narrow band, the high resolution range, and the high resolution images. The developments of the radar sea target recognition technologies are predicted based on the available researches.

Cite this article

HE Zhihua , DUAN Jia , LU Da . A review of radar sea target recognition technology[J]. Science & Technology Review, 2017 , 35(20) : 61 -68 . DOI: 10.3981/j.issn.1000-7857.2017.20.006

References

[1] Peter T. 雷达目标识别导论[M]. 罗军, 曾浩, 李庶中, 等, 译. 北京:电子工业出版社, 2013. Peter T. Introduction to radar target recognition[M]. Luo Jun, Zeng Hao, Li Zhezhong, et al, trans. Beijing:Publishing House of Electronics In-dustry, 2013.
[2] Mahood T. Blue Fire[EB/OL]. (2009-01-09)[2017-09-06]. http://www.stealthskater.com/Documents/Mahood_02.pdf.
[3] 环境电磁特征重点实验室[J]. 微波学报, 2010(增刊2):340-340. National Key Laboratory of Environmental Electromagnetic Feature:An introduction[J]. Journal of Microwaves, 2010(Suppl 2):340-340.
[4] 吴楠, 陈炯. 舰船目标RCS水面模拟试验及应用探讨[J]. 中国舰船研究, 2012(5):103-106. Wu Nan, Cheng Jion. Discussion on the RCS simulation test of naval ships on water surface[J]. Chinese Journal of Ship Research, 2012(5):103-106.
[5] Burkholder R J, Lundin T. Forward backward iterative physical optics algorithm for computing the RCS of open-ended cavities[J]. IEEE Trans-actions on Antenna and Propagation, 2005, 53(2):793-799.
[6] Liu J, Fang N, Wang B, et al. An efficient ray-tracing method for RCS prediction in Greco[J]. Microwave & Optical Technology Letters, 2013, 55(3):586-589.
[7] 丁凡. 基于SBR的舰船目标多次散射RCS计算[J]. 舰船科学技术, 2015, 37(4):98-101. Ding Fan. Multiple scattering RCS computation for warship target based on SBR[J]. Ship Science and Technology, 2015, 37(4):98-101.
[8] 孙占久, 聂宏, 昂海松, 等. 含腔复杂军事目标RCS综合计算方法[J]. 南京航空航天大学学报, 2009, 41(1):80-84. Sun Zhanjiu, Nie Hong, Ang Haisong, et al. Synthetic calculation meth-od for RCS of military complex target with open cavities[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1):80-84.
[9] Chen V C, Miceli W J, Tahmoush D. Radar Micro-Doppler signature:Processing and applications[M]. Herts:The Institution of Engineering and Technology, 2014.
[10] 陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4(6):630-638. Chen Xiaolong, Dong Yunlong, Li Xiuyou, et al. The modeling and analysis of micro feature of sea targets[J]. Journal of Radars, 2015, 4(6):630-638.
[11] 聂在平, 陈涌频. 电磁波与复杂目标/环境的相互作用理论、方法与应用[J]. 中国科学(信息科学), 2017, 47:1-30. Nie Zaiping, Chen Yongpin. The interactive effect theory, method and application of electro-magnetic wave with complex target/environment[J]. Scientia Sinica Informations, 2017, 47:1-30.
[12] Council for Scientific and Industrial Research. Fynmeet-dynamic RCS measurement facility[EB/OL]. (2012-09-18)[2017-09-06]. http://def-sec.scir.co.za/wp-content/uploads/2012/09/Flynmeet-Fact-Sheet.pdf.
[13] 康士峰, 王显德. 粗糙面与目标电磁散射统计特性分析[J]. 微波学报, 2004, 20(3):43-46. Kang Shifeng, Wang Xiande. The statistical feature analysis of the electro-magnetic scattering between rough face and target[J]. Journal of Microwave, 2004, 20(3):43-46.
[14] Li J, Guo L X. FDTD investigation on electromagnetic scattering from two-layered rough surfaces[J]. Applied Computational Electromagnetic Society Journal, 2010, 25(5):450-457.
[15] Jin Y Q. Advances in numerical simulation of composite scattering from target above rough surface[C]//9th International Symposium on Antennas Propagation and EM Theory(ISAPE). Piscataway, NJ:IEEE, 2010:806-809.
[16] 安玉元. 目标电磁散射特性的快速计算方法研究[D]. 南京:南京理工大学, 2015. An Yuyuan. Investication of fast numerical methods for electromagnet-ic scattering from objects[D]. Nanjing:Nanjing University of Science & Technology, 2015.
[17] Xu F, Jin Y Q. Bidirectional analytic ray tracing for fast computation of composite scattering from an electric-large target over randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(5):1495-1505.
[18] Hua H Q, Jiang Y S, He Y T. High-frequency method for terahertz ra-dar cross section of conductive targets in free space[J]. Progress in Electromagnetics Research B, 2014, 59(A12):193-204.
[19] Johnson J T. A numerical study of scattering from an object above a rough surface[J]. IEEE Transactions on Antennas and Propagation, 2002, 50:1361-1367.
[20] 王更生. 动态海面与目标复合电磁散射特性研究[D]. 成都:电子科技大学, 2014. Wang Gengsheng. Research on electromagnetic scattering properties from the dynamic sea surfaces and the targets[D]. Chengdu:University of Electronic Science and Technology of China, 2014.
[21] Ye H X, Jin Y Q. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface[J]. IEEE Transactions on Geosci-ence and Remote Sensing, 2007, 45(5):1174-1180.
[22] Yang W, Yang W, Zhao Z Q, et al. Iterative hybrid method for electro-magnetic scattering from a 3-D object above a 2-D random dielectric rough surface[J]. Progress in Electromagnetic Research, 2011, 17:435-448.
[23] Meng X, Guo L X. An accelerated ray tracing method based on the TSM for the RCS prediction of 3D large-scale dielectric sea surface[J]. IEEE Antennas Wireless Propagation Letters, 2015, 14:233-236.
[24] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究[J]. 物理学报, 2015, 64(6):1-8. Chai Shuirong, Guo Lixin. The study of fast algorithm of back electromagnetic scattering between one dimensional sea surface and two-di-mensional ships based on Compressive sensing[J]. Journal of physics, 2015, 64(6):1-8.
[25] Yang W, Yang W, Zhao Z Q, et al. Iterative hybrid method for electro-magnetic scattering from a 3-D object above a 2-D random dielectric rough surface[J]. Progress in Electromagnetic Research, 2011, 17:435-448.
[26] Guo G R, Yu W X, Zhang W. An intelligence recognition method of ship targets[J]. Fuzzy Sets &Systems, 1990, 36(1):27-36.
[27] Zwiche P E, Kiss J I. A new implementation of mellin transform and its application to radar recognition of ships[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(12):245-251.
[28] Inggs M R, Robinson A D. Ship target recognition using low resolution radar and neural networks[J]. IEEE Transactions on Aerospace and electronic Systems, 1999, 35(2):386-393.
[29] Guo G R, Yu W X, Zhang W. An intelligence recognition method of ship targets[J]. Fuzzy Sets & Systems, 1990, 36(1):27-36.
[30] Chen X L, Guan J, Bao Z H, et al. Detection and extraction of target with micro motion in spiky sea clutter via short-time fractional Fouri-er transform[J]. IEEE Transactions on Geoscience and Remote Sens-ing, 2014, 52(3):1002-1018.
[31] 杨秋, 张群, 王敏, 等. 基于机载窄带雷达的舰船目标多普勒特性分析[J]. 系统工程与电子技术, 2015, 37(12):2733-2738. Yang Qiu, Zhang Qun, Wang Min, et al. The micro-Doppler analysis of ship of narrow band radar[J]. Systems engineering and electronic technology, 2015, 37(12):2733-2738.
[32] 陈小龙, 关键, 董云龙, 等. 稀疏域海杂波抑制与微动目标检测方法[J]. 电子学报, 2016(4):860-867. Chen Xiaolong, Guan Jian, Dong Yunlong, et al. Sea clutter suppres-sion and micromotion target detection in sparse domain[J]. Acta Elec-tronica Sinica, 2016(4):860-867.
[33] Slomka S, Gibbins D, Gray D, et al. Features for high resolution radar range profile based ship classification[C]//International Symposium on Signal Processing and its Applications. Piscataway, NJ:IEEE, 1999:329-332.
[34] Pang M, Jiang J, Kong Q P. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1609-1613.
[35] Kreutz M, Volpel B, Jansen H. Scale-invariant image recognition based on high-order auto-correlation features[J]. Pattern Recognition, 1996, 29(l):19-26.
[36] 肖顺平, 郭桂蓉, 庄钊文, 等. 基于散射中心的目标建模与识别[J]. 系统工程与电子技术, 1994, 16(6):55-61. Xiao Shunping, Guo Guirong, Zhuang Zhaowen, et al. The target mod-eling and recognition based on scattering centers[J]. Systems Engineer-ing and Electronic Technology, 1994, 16(6):55-61.
[37] Du L, He H, Zhao L, et al. Noise robust HRRP target recognition based on scatter matching algorithm[J]. IEEE Sensors Journal, 2016, 16(6):1743-1753.
[38] 范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38(12):3361-3368. Fan Xueman, Hu Shenliang, He Jingbo. The feature extraction and se-lection of full-polarimetric HRRP of sea targets recognition[J]. Jour-nal of Electronica and Information, 2016, 38(12):3361-3368.
[39] Liu X K, Wang B F, Xu X J. Modified nearest neighbor fuzzy classifi-cation[C]//6th IEEE Conference on Industrial Electronics and Applica-tions. Piscataway, NJ:IEEE, 2011.
[40] Osman K, Okan M, Zahid K, et al. Convolutional neural networksbased ship target recognition using high resolution range profiles[C]//18th International Radar Symposium(IRS). Piscataway, NJ:IEEE, 2017.
[41] Keith C, Andrew W. Bayesian gama mixture model approach to radar target recognition[J]. IEEE Transactions on Areospace and Electronic Systems, 2003, 39(4):1201-1208.
[42] Shang S Z, Li M, Hou Y N, et al. A novel method of ISAR image preprocessing for ship[C]//IEEE International Conference on Electronic Information and Communication Technology. Piscataway, NJ:IEEE, 2016.
[43] Saidi M N, Toumi A, Hoeltzener B, et al. Aircraft target recognition:A novel approach for features extraction from ISAR images[C]//Interna-tional, Radar Conference-Surveillance for a Safer World. Piscataway, NJ:IEEE, 2009.
[44] Kurowska A. The Preliminary survey of ship recognition algorithms us-ing ISAR images[C]//17th International Radar Symposium (IRS). Pisca-taway, NJ:IEEE, 2016.
[45] 张泽兵. 知识辅助的SAR目标索引及特征提取技术研究[D]. 长沙:国防科技大学, 2013. Zhang Zebing. The study of knowledge aided SAR target indexing and feature extraction[D]. Changsha:National Defense University, 2013.
[46] Bhanu B, Peng J. Adaptive integrated image segmentation and object recognition[J]. IEEE Transactions on Systems Man, and Cyberic, Part C:Applications and Reviews, 1998, 30(4):427-441.
[47] 陈文婷, 邢相薇, 计科峰. SAR图像舰船目标识别综述[J]. 现代雷达, 2012, 34(11):53-57. Chen Wenting, Xing Xiangwei, Ji Kefeng. The review of ship SAR im-age recognition[J]. Modern Radar, 2012, 34(11):53-57.
[48] Du L L, Xu Y L, Chen Z P. A new algorithm for ship centerline ex-traction in ISAR image[J]. International Conference on Advanced Com-puter Control, 2010, 2(5):213-216.
[49] 丁昊, 关键, 黄勇, 等. 非平稳海杂波的消除趋势波动分析[J]. 电波科学学报, 2013, 28(1):116-124. Ding Hao, Guan Jian, Huang Yong, et al. Detrended fluctutation analy-sis of non-stationary sea clutter[J]. Chinese Journal of Radio Science, 2013, 28(1):116-124.
[50] Potter L C, Moses R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1):79-91.
[51] Touzi R, Vachon P W. RCM polarimetric SAR for enhanced ship de-tection and classification[J]. Canadian Journal of Remote Sensing Jour-nal, 2016, 41(5):473-484.
[52] Tria M, Ovarlez J P, Vignaud L. SAR imaging using multidimensional continuous wavelet transform[C]//12th European Signal Processing Conference. Piscataway, NJ:IEEE, 2014, 14(5):1179-1182.
[53] Capraro G T, Farina A, Griffiths H. Knowledge-based radar signal and data processing:A tutorial review[J]. IEEE Signal Processing Mag-azine, 2006, 23(1):18-29.
[54] Smith G E. Cognitive radar experiments at The Ohio State University[C]//Cognitive Communications for Aerospace Applications Workshop. Piscataway, NJ:IEEE, 2017, doi:10.1109/CCAAW.2017.8001879.
Outlines

/