This paper studies the characteristics of ultrasonic propagation in a model of a small pillar of the pore-cave type carbonate rock of different size and shape and distribution and in ultrasonic multi frequency, using the numerical simulation method of two-dimensional ultrasound and physical model experiments, from the perspective of kinematics and dynamics. The results show that in the single pore-cave discontinuous distribution, the size change almost has no effect on the velocity but is correlated with the attenuation coefficient positively; in the case of the same size, with the increase of the test frequency, the velocity increases, with the attenuation coefficient and the frequency in an exponential increasing relation. The influence of the hole shape (round holes or square holes) is related with the porosity. The porosity of 9% is the critical value. When it is less than 9%, the effects can be neglected; when it is more than 9%, the influence of circular holes is greater than that of square holes on the attenuation coefficient. The influence of elliptical holes is related with the aspect ratio, when the aspect ratio is greater than 1, with the increase of the aspect ratio, the attenuation coefficient changes little, whereas the attenuation coefficient varies greatly when the aspect ratio is less than 1. With the increase of the concentration of the pore distribution, the wave velocity decreases linearly, and the attenuation coefficient increases linearly.
ZHOU You
,
CHEN Qiao
,
CHENG Liang
,
CAO Hai'an
,
XIE Zhiguo
,
LIU Jingcheng
. Characteristics of ultrasonic propagation in carbonate rock pore model[J]. Science & Technology Review, 2017
, 35(18)
: 64
-72
.
DOI: 10.3981/j.issn.1000-7857.2017.18.008
[1] Baechle G T, Weger R, Eberli G P, et al. The role of macroporosity and microporosity in constraining uncertainties and in relating velocity to permeability in carbonate rocks[M]//SEG Technical Program Expand-ed Abstracts 2004. Houston, Texas, USA:Society of Exploration Geo physicists, 2004:1662-1665.
[2] Baechle G, Al-Kharusi L, Eberli G, et al. Effect of spherical pore shapes on acoustic properties in carbonates[M]//AAPG Annual Meeting Abstracts 2007. California:American Association of Petroleum Geolo-gists, 2007:7.
[3] Colpaert A, Baechle G T, Brevik I, et al. Elastic properties and fluid substitution in carbonate rocks from experimental velocity data and pore shape analysis[EB/OL].[2016-08-29]. https://www.researchgate.net/publication/237785028.
[4] Baechle G T, Colpaert A, Eberli G, et al. Effects of microporosity on sonic velocity in carbonate rocks[J]. The Leading Edge, 2008, 27(8):118-125.
[5] Weger R J, Eberli G P, Baechle G T, et al. Quantification of pore struc-ture and its effect on sonic velocity and permeability in carbonates[J]. Aapg Bulletin, 2009, 10(93):1297-1317.
[6] 曹均, 贺振华, 黄德济, 等. 孔洞储层地震波特征响应的物理模型试验研究[J]. 成都理工大学学报(自然科学版), 2003, 30(6):576-582. Cao Jun, He Zhenghua, Huang Deji, et al. Seismic responses to porehole reservoir by physical modeling[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2003, 30(6):576-582.
[7] 李琼, 贺振华, 黄德济, 等. 单孔洞缝模型超声波试验测试与分析[J]. 石油物探, 2007, 46(1):100-104. Li Qiong, He Zhenghua, Huang Deji, et al. Ultrasonic experiment and analysis of single fracture-cave physical model[J]. Geophysical Pros-pecting for Petroleum, 2007, 46(1):100-104.
[8] 姚姚, 唐文榜. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J]. 石油地球物理勘探, 2003, 38(6):623-629. Yao Yao, Tang Wenbang. Theoretical study of detectable cavern-frac-tured reservoir in weathered Karst of deep carbonatite[J]. Oil Geophy-dical Prosprcting, 2003, 38(6):623-629.
[9] Yao Y, Sa L M, Wang H X. Research on the seismic wave field of karst cavern reservoirs near deep carbonate weathered crusts[J]. Ap-plied Geophysics, 2005, 2(2):94-102.
[10] 季敏, 魏建新. 孔洞物理模型数据的地震响应特征分析[J]. 石油地球物理勘探, 2009, 44(2):197-200. Ji Min, Wei Jianxin. Analysis of seismic response of pore-cave physi-cal model data[J]. Oil Geophydical Prosprcting, 2009, 44(2):197-200.
[11] 王立华, 魏建新. 溶洞物理模型的地震响应及其属性分析[J]. 石油地球物理勘探, 2008, 43(3):291-296. Wang Lihua, Wei Jianxin. Seismic response of karst cave physical model and analysis of its attributes[J]. Oil Geophydical Prosprcting, 2008, 43(3):291-296.
[12] 李凡异, 魏建新. 碳酸盐岩溶洞横向尺度变化的地震响应正演模拟[J]. 石油物探, 2009, 48(6):558-562. Li Fanyi, Wei Jianxin. Forward simulation of seismic response in car-bonate caverns with varied lateral scale[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):558-562.
[13] 魏建新, 狄帮让, 王立华. 孔洞储层地震物理模型研究[J]. 石油物探, 2008, 47(3):156-160. Wei Jianxin, Di Bangrang Wang Lihua. Seismic physical modeling for cavern reservoir[J]. Geophysical Prospecting for Petroleum, 2008, 47(3):156-160.
[14] 陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6):2044-2052. Chen Qiao, Liu Xiangjun, Liang Lixi, et al. Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Jour-nal of Geophys, 2012, 55(6):2044-2052.
[15] 梁利喜, 周龙涛, 刘向君, 等. 孔洞结构对超声波衰减特性的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊):3208-3214. Liang Lixi, Zhou Longtao, Liu Xiangjun, et al. Study of effect of pore structure on ultrasonic attenuation[J]. Journal of Rock Mechanics and Engineering, 2015, 34(Suppl):3208-3214.
[16] 王森, 刘向君, 陈乔, 等. 碳酸盐岩储层孔隙度超声波评价数值模拟[J]. 地球物理学进展, 2015, 30(1):0267-0273. Wang Sen, Liu Xiangjun, Chen Qiao, et al. Carbonate reservoir porosi-ty ultrasonic evaluation by numerical simulation[J]. Progress in Geo-physics, 2015, 30(1):0267-0273.
[17] Reynold A C. Boundary conditions for the numerical solution of wave propagation problems[J]. Geophysics, 1978, 43(6):1099-1110.