[1] Barcohen Y. Worldwide electroactive polymers (artificial muscle) news-letter[J]. EAP Newsletter, 1999, 1(2):1-12.
[2] Worldwide electroactive polymers (EAP) newsletter[J]. EAP Newsletter, 2005, 7(1):1-26.
[3] 科学(八年级上册)[M]. 杭州:浙江教育出版社, 2013:106. The course of Science (Grad Eight)[M]. Hangzhou:Zhejiang Education Publication, 2013:106.
[4] Shahinpoor M. Conceptual design, kinematics and dynamics of swim-ming robotic structures using ionic polymeric gel muscles[J]. Smart Ma-terials & Structures, 1992, 1(1):91-94.
[5] Segalman D, Witkowski W, Adolf D, et al. Electrically-controlled poly-meric gels as active materials in adaptive structures[C]. Active materi-als and adaptive structures conference, Alexandria V A, November 5-7, 1991.
[6] Najem J, Leo D J. A boi-inrpired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators[C]//Proceeding of Electroactive Polymer Actuators and Devices (EAPAD) 2012. Belling-ham:SPIE, 2012, doi:10.1117/12.915170.
[7] Liu H, Zhang L, Yang D, et al. Mechanical, dielectric and actuated strain of silicone elastomer filled with various types of TiO2[J]. Soft Ma-terials, 2013, 11(3):363-370.
[8] Yang D, Tian M, Kang H, et al. New polyester dielectric elastomer with large actuated strain at low electric field[J]. Materials Letters, 2012, 76(6):229-232.
[9] Yang D, Tian M, Dong Y, et al. Disclosed dielectric and electromechan-ical properties of hydrogenated nitrile-butadiene dielectric elastomer[J]. Smart Materials & Structures, 2012, 21(3):035017.
[10] Liu H, Zhang L, Yang D, et al. A new kind of electro-active polymer composite composed of silicone elastomer and polyethylene glycol[J]. Journal of Physics D Applied Physics, 2012, 45(48):485303.
[11] Vucong T, Jeanmistral C, Sylvestre A. Impact of the nature of the com-pliant electrodes on the dielectric constant of acrylic and silicone elec-troactive polymers[J]. Smart Materials & Structures, 2012, 21(10):5036.
[12] Carpi F, Gallone G, Galantini F, et al. Silicone-Poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties[J]. Advanced Functional Materials, 2010, 18(2):235-241.
[13] Carpi F, De Rossi D. Enhancement of electromechanical transduction properties of a silicone elastomer by blending with a conjugated poly-mer[C]//Proceeding of Electroactive Polymer Actuators and Devices (EAPAD) 2008. Bellingham:SPIE, 2008, doi:10.1117/12.776641.
[14] Liu Y J, Leng J S, Zhang Z. New silicone dielectric elastomers with a high dielectric constant[C]//Proceeding of Modeling, Signal Processing, and Control for Smart Structures 2008. Bellingham:SPIE, 2008, doi:10.1117/12.775989.
[15] Jung K, Lee J H, Cho M S, et al. Development of enhanced synthetic rubber for energy efficient polymer actuators[J]. Smart Structures & Materials Electroactive Polymer Actuators & Devices, 2006, 6168(2):61680N-61680N-9.
[16] Liu Y, Liu L, Zhang Z, et al. Dielectric elastomer film actuators:Char-acterization, experiment and analysis[J]. Smart Materials & Structures, 2009, 18(9), doi:10.1088/0964-1726/18/9/095024.
[17] Zhao H, Xia Y J, Dang Z M, et al. Composition dependence of dielec-tric properties, elastic modulus, and electroactivity in (carbon blackBaTiO3)/silicone rubber nanocomposites[J]. Journal of Applied Poly-mer Science, 2013, 127(6):4440-4445.
[18] Dang Z M, Xia B, Yao S H, et al. High-dielectric-permittivity highelasticity three-component nanocomposites with low percolation thresh-old and low dielectric loss[J]. Applied Physics Letters, 2009, 94(4), doi:10.1063/1.3072355.
[19] Carpi F, Rossi D D. Improvement of electromechanical actuating per-formances of a silicone dielectric elastomer by dispersion of titanium dioxide powder[J]. IEEE Transactions on Dielectrics & Electrical Insu-lation, 2005, 12(4):835-843.
[20] Ouyang G, Wang K, Chen X Y. TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant[J]. Journal of Micromechanics & Microengineering, 2012, 22(7):74002-74010.
[21] Mathew G, Rhee J M, Nah C, et al. Effects of silicone rubber on prop-erties of dielectric acrylate elastomer actuator[J]. Polymer Engineering & Science, 2006, 46(10):1455-1460.
[22] Tangboriboon N, Datsanae S, Onthong A, et al. Electromechanical re-sponses of dielectric elastomer composite actuators based on natural rubber and alumina[J]. Journal of Elastomers & Plastics, 2012, 45(45):143-161.
[23] Cameron C G, Underhill R S. Conductive filler-elastomer composites for Maxwell stress actuator applications[C]//Proceeding of Smart Struc-tures and Materials 2004:Electroactive Polymer Actuators and Devic-es (EAPAD). Bellingham:SPIE, 2004, doi:10.1117/12.539733.
[24] Huang C, Zhang Q M, Debotton G, et al. All-organic dielectric-perco-lative three-component composite materials with high electromechani-cal response[J]. Applied Physics Letters, 2004, 84(22):4391-4393.
[25] Zhang Q M, Li H, Poh M, et al. An all-organic composite actuator ma-terial with a high dielectric constant.[J]. Nature, 2002, 419(6904):284-287.
[26] Wang G L, Zhang Y Y, Duan L, et al. Property reinforcement of sili-cone dielectric elastomers filled with self-prepared calcium copper ti-tanate particles[J]. Journal of Applied Polymer Science, 2015, 132(39), doi:10.1002/app.42613.
[27] Wang G L, Zhang Y Y, Duan L, et al. Preparation of π-conjugated truxene/silicone dielectric elastomers with large actuated strain at low electric field[J]. Materials Letters, 2016, 169:157-159.
[28] Wang G L, Duan L, Ding K H, et al. Property reinforcement of acrylo-nitrile-butadiene-styrene by simultaneous incorporation of carbon nanotubes and self-prepared copper particles[J]. Journal of Applied Polymer Science, 2015, 132(13), doi:10.1002/app.41738.
[29] Hu B, Chen W, Zhou J. High performance flexible sensor based on in-organic nanomaterials[J]. Sensors & Actuators B Chemical, 2013, 176(1):522-533.
[30] Lipomi D J, Vosgueritchian M, Tee B C, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12):788-792.
[31] Mannsfeld S C B, Tee C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10):859-864.
[32] Xu J, Wang S, Wang G N, et al. Highly stretchable polymer semicon-ductor films through the nanoconfinement effect.[J]. Science, 2017, 355(6320):59-64.
[33] Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fishscale-like graphene-sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10(8):7901-7906.
[34] Xu J, Chen J, Zhang M, et al. Highly conductive stretchable elec-trodes prepared by in situ reduction of wavy graphene oxide films coat-ed on elastic tapes[J]. Advanced Electronic Materials, 2016, 2(6):1600022.
[35] Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zir-conate titanate sensors with enhanced piezoelectric response for cuta-neous pressure monitoring[J]. Nature Communications, 2014, 5(7697):4496.
[36] 仉月仙, 李斌, 导电橡胶复合材料温敏特性研究[J]. 传感器与微系统, 2016, 35(12):6-10. Zhang Yuexian, Li Bin, Research on thermal sensitive characteristics of conductive rubber polymer composites[J]. Transducer and Microsys-tem Technologies, 2016, 35(12):6-10.
[37] 田合雷, 刘平, 郭小辉, 等. 基于导电橡胶的柔性压力/温度复合感知系统[J]. 传感器与微系统, 2015, 34(10):100-103. Tian Helei, Liu Ping, Guo Xiaoping, et al. Flexible pressure/tempera-ture composite perceptual system based on conductive rubber[J]. Transducer and Microsystem Technologies, 2015, 34(10):100-103.
[38] 大高秀夫, 金子加津寛. 静電容量型センサシート及び静電容量型センサ:WO 2014157627 A1[P]. 2014. Hideo Otake, Kaneko Hiroshi Kazu. An electrostatic capacity type sen-sor and capacitance type sensor sheet:WO 2014157627 A1[P]. 2014.
[39] Silva M J D, Sanches A O, Malmonge L F, et al. Electrical, mechani-cal, and thermal analysis of natural rubber/polyaniline-Dbsa composite[J]. Materials Research, 2014, 17(8):1131-1143.
[40] Massoumi B, Farjadbeh F, Mohammadi R, et al. Synthesis of conduc-tive adhesives based on epoxy resin/nanopolyaniline and chloroprene rubber/nanopolyaniline:Characterization of thermal, mechanical and electrical properties[J]. Journal of Composite Materials, 2013, 47(9):1185-1195.
[41] 张明, 王根林, 张翔, 等. 一种高介电聚苯胺/弹性体复合材料的制备方法:CN106832733A[P]. 2017-06-13. Zhang Ming, Wang Genlin, Zhang Xiang, et al. A method for prepar-ing PANI/elastomer composite with high dielectric constant:CN106832733A[P]. 2017-06-13.
[42] 张明, 王根林, 张杰, 等. 一种可拉伸聚苯胺/弹性体导电复合材料的制备方法:CN106832920A[P]. 2017-06-13. Zhang Ming, Wang Genlin, Zhang Jie, et al. A technique for fabricat-ing stretchable PANI/elastomer conductive composite:CN106832920A[P]. 2017-06-13.