Spescial Issues

Soft materials for artificial robot

  • ZHANG Ming ,
  • ZHANG Yiyang ,
  • LIU Junliang
Expand
  • 1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
    2. School of System Informatics, Kobe University, Kobe 657-8501, Japan

Received date: 2017-07-31

  Revised date: 2017-08-28

  Online published: 2017-09-25

Abstract

Generally, soft materials for design and manufacture of bionic robots include the soft driving and sensing materials, as the receptor and the effector, respectively. The development of novel soft materials with high performance is very important. This paper reviews the conception of soft materials for bionic robots and the research development of the soft driving materials and sensing materials, including many examples in this area. The challenges and the future trend of this research field are discussed.

Cite this article

ZHANG Ming , ZHANG Yiyang , LIU Junliang . Soft materials for artificial robot[J]. Science & Technology Review, 2017 , 35(18) : 29 -38 . DOI: 10.3981/j.issn.1000-7857.2017.18.003

References

[1] Barcohen Y. Worldwide electroactive polymers (artificial muscle) news-letter[J]. EAP Newsletter, 1999, 1(2):1-12.
[2] Worldwide electroactive polymers (EAP) newsletter[J]. EAP Newsletter, 2005, 7(1):1-26.
[3] 科学(八年级上册)[M]. 杭州:浙江教育出版社, 2013:106. The course of Science (Grad Eight)[M]. Hangzhou:Zhejiang Education Publication, 2013:106.
[4] Shahinpoor M. Conceptual design, kinematics and dynamics of swim-ming robotic structures using ionic polymeric gel muscles[J]. Smart Ma-terials & Structures, 1992, 1(1):91-94.
[5] Segalman D, Witkowski W, Adolf D, et al. Electrically-controlled poly-meric gels as active materials in adaptive structures[C]. Active materi-als and adaptive structures conference, Alexandria V A, November 5-7, 1991.
[6] Najem J, Leo D J. A boi-inrpired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators[C]//Proceeding of Electroactive Polymer Actuators and Devices (EAPAD) 2012. Belling-ham:SPIE, 2012, doi:10.1117/12.915170.
[7] Liu H, Zhang L, Yang D, et al. Mechanical, dielectric and actuated strain of silicone elastomer filled with various types of TiO2[J]. Soft Ma-terials, 2013, 11(3):363-370.
[8] Yang D, Tian M, Kang H, et al. New polyester dielectric elastomer with large actuated strain at low electric field[J]. Materials Letters, 2012, 76(6):229-232.
[9] Yang D, Tian M, Dong Y, et al. Disclosed dielectric and electromechan-ical properties of hydrogenated nitrile-butadiene dielectric elastomer[J]. Smart Materials & Structures, 2012, 21(3):035017.
[10] Liu H, Zhang L, Yang D, et al. A new kind of electro-active polymer composite composed of silicone elastomer and polyethylene glycol[J]. Journal of Physics D Applied Physics, 2012, 45(48):485303.
[11] Vucong T, Jeanmistral C, Sylvestre A. Impact of the nature of the com-pliant electrodes on the dielectric constant of acrylic and silicone elec-troactive polymers[J]. Smart Materials & Structures, 2012, 21(10):5036.
[12] Carpi F, Gallone G, Galantini F, et al. Silicone-Poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties[J]. Advanced Functional Materials, 2010, 18(2):235-241.
[13] Carpi F, De Rossi D. Enhancement of electromechanical transduction properties of a silicone elastomer by blending with a conjugated poly-mer[C]//Proceeding of Electroactive Polymer Actuators and Devices (EAPAD) 2008. Bellingham:SPIE, 2008, doi:10.1117/12.776641.
[14] Liu Y J, Leng J S, Zhang Z. New silicone dielectric elastomers with a high dielectric constant[C]//Proceeding of Modeling, Signal Processing, and Control for Smart Structures 2008. Bellingham:SPIE, 2008, doi:10.1117/12.775989.
[15] Jung K, Lee J H, Cho M S, et al. Development of enhanced synthetic rubber for energy efficient polymer actuators[J]. Smart Structures & Materials Electroactive Polymer Actuators & Devices, 2006, 6168(2):61680N-61680N-9.
[16] Liu Y, Liu L, Zhang Z, et al. Dielectric elastomer film actuators:Char-acterization, experiment and analysis[J]. Smart Materials & Structures, 2009, 18(9), doi:10.1088/0964-1726/18/9/095024.
[17] Zhao H, Xia Y J, Dang Z M, et al. Composition dependence of dielec-tric properties, elastic modulus, and electroactivity in (carbon blackBaTiO3)/silicone rubber nanocomposites[J]. Journal of Applied Poly-mer Science, 2013, 127(6):4440-4445.
[18] Dang Z M, Xia B, Yao S H, et al. High-dielectric-permittivity highelasticity three-component nanocomposites with low percolation thresh-old and low dielectric loss[J]. Applied Physics Letters, 2009, 94(4), doi:10.1063/1.3072355.
[19] Carpi F, Rossi D D. Improvement of electromechanical actuating per-formances of a silicone dielectric elastomer by dispersion of titanium dioxide powder[J]. IEEE Transactions on Dielectrics & Electrical Insu-lation, 2005, 12(4):835-843.
[20] Ouyang G, Wang K, Chen X Y. TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant[J]. Journal of Micromechanics & Microengineering, 2012, 22(7):74002-74010.
[21] Mathew G, Rhee J M, Nah C, et al. Effects of silicone rubber on prop-erties of dielectric acrylate elastomer actuator[J]. Polymer Engineering & Science, 2006, 46(10):1455-1460.
[22] Tangboriboon N, Datsanae S, Onthong A, et al. Electromechanical re-sponses of dielectric elastomer composite actuators based on natural rubber and alumina[J]. Journal of Elastomers & Plastics, 2012, 45(45):143-161.
[23] Cameron C G, Underhill R S. Conductive filler-elastomer composites for Maxwell stress actuator applications[C]//Proceeding of Smart Struc-tures and Materials 2004:Electroactive Polymer Actuators and Devic-es (EAPAD). Bellingham:SPIE, 2004, doi:10.1117/12.539733.
[24] Huang C, Zhang Q M, Debotton G, et al. All-organic dielectric-perco-lative three-component composite materials with high electromechani-cal response[J]. Applied Physics Letters, 2004, 84(22):4391-4393.
[25] Zhang Q M, Li H, Poh M, et al. An all-organic composite actuator ma-terial with a high dielectric constant.[J]. Nature, 2002, 419(6904):284-287.
[26] Wang G L, Zhang Y Y, Duan L, et al. Property reinforcement of sili-cone dielectric elastomers filled with self-prepared calcium copper ti-tanate particles[J]. Journal of Applied Polymer Science, 2015, 132(39), doi:10.1002/app.42613.
[27] Wang G L, Zhang Y Y, Duan L, et al. Preparation of π-conjugated truxene/silicone dielectric elastomers with large actuated strain at low electric field[J]. Materials Letters, 2016, 169:157-159.
[28] Wang G L, Duan L, Ding K H, et al. Property reinforcement of acrylo-nitrile-butadiene-styrene by simultaneous incorporation of carbon nanotubes and self-prepared copper particles[J]. Journal of Applied Polymer Science, 2015, 132(13), doi:10.1002/app.41738.
[29] Hu B, Chen W, Zhou J. High performance flexible sensor based on in-organic nanomaterials[J]. Sensors & Actuators B Chemical, 2013, 176(1):522-533.
[30] Lipomi D J, Vosgueritchian M, Tee B C, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12):788-792.
[31] Mannsfeld S C B, Tee C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10):859-864.
[32] Xu J, Wang S, Wang G N, et al. Highly stretchable polymer semicon-ductor films through the nanoconfinement effect.[J]. Science, 2017, 355(6320):59-64.
[33] Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fishscale-like graphene-sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10(8):7901-7906.
[34] Xu J, Chen J, Zhang M, et al. Highly conductive stretchable elec-trodes prepared by in situ reduction of wavy graphene oxide films coat-ed on elastic tapes[J]. Advanced Electronic Materials, 2016, 2(6):1600022.
[35] Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zir-conate titanate sensors with enhanced piezoelectric response for cuta-neous pressure monitoring[J]. Nature Communications, 2014, 5(7697):4496.
[36] 仉月仙, 李斌, 导电橡胶复合材料温敏特性研究[J]. 传感器与微系统, 2016, 35(12):6-10. Zhang Yuexian, Li Bin, Research on thermal sensitive characteristics of conductive rubber polymer composites[J]. Transducer and Microsys-tem Technologies, 2016, 35(12):6-10.
[37] 田合雷, 刘平, 郭小辉, 等. 基于导电橡胶的柔性压力/温度复合感知系统[J]. 传感器与微系统, 2015, 34(10):100-103. Tian Helei, Liu Ping, Guo Xiaoping, et al. Flexible pressure/tempera-ture composite perceptual system based on conductive rubber[J]. Transducer and Microsystem Technologies, 2015, 34(10):100-103.
[38] 大高秀夫, 金子加津寛. 静電容量型センサシート及び静電容量型センサ:WO 2014157627 A1[P]. 2014. Hideo Otake, Kaneko Hiroshi Kazu. An electrostatic capacity type sen-sor and capacitance type sensor sheet:WO 2014157627 A1[P]. 2014.
[39] Silva M J D, Sanches A O, Malmonge L F, et al. Electrical, mechani-cal, and thermal analysis of natural rubber/polyaniline-Dbsa composite[J]. Materials Research, 2014, 17(8):1131-1143.
[40] Massoumi B, Farjadbeh F, Mohammadi R, et al. Synthesis of conduc-tive adhesives based on epoxy resin/nanopolyaniline and chloroprene rubber/nanopolyaniline:Characterization of thermal, mechanical and electrical properties[J]. Journal of Composite Materials, 2013, 47(9):1185-1195.
[41] 张明, 王根林, 张翔, 等. 一种高介电聚苯胺/弹性体复合材料的制备方法:CN106832733A[P]. 2017-06-13. Zhang Ming, Wang Genlin, Zhang Xiang, et al. A method for prepar-ing PANI/elastomer composite with high dielectric constant:CN106832733A[P]. 2017-06-13.
[42] 张明, 王根林, 张杰, 等. 一种可拉伸聚苯胺/弹性体导电复合材料的制备方法:CN106832920A[P]. 2017-06-13. Zhang Ming, Wang Genlin, Zhang Jie, et al. A technique for fabricat-ing stretchable PANI/elastomer conductive composite:CN106832920A[P]. 2017-06-13.
Outlines

/