Special Issues

Complex system and its application in urban transportation network

  • LIU Ming ,
  • YAN Yamei ,
  • HUANG Yan
Expand
  • School of Basic Sciences, Changchun University of Technology, Changchun 130012, China

Received date: 2017-01-18

  Revised date: 2017-04-27

  Online published: 2017-07-29

Abstract

In view of the increasingly serious urban traffic problems, it is of great significance analyzing and studying the characteristics of the complex urban transportation network to solve urban traffic problems and rationally plan the city layout. This paper firstly introduces the relevant theories of complex systems, including several statistical properties commonly used in the study of complex systems and the development of complex network based on different topologies. Then, the applications of complex network in the urban transportation system are elaborated by analyzing the traffic flow, the influence of different topologies on the transportation network, the network center node, the cascade failure phenomenon and the network stability, respectively. Finally, the future research direction and the development trend of the complex systems in the urban transportation network are pointed out.

Cite this article

LIU Ming , YAN Yamei , HUANG Yan . Complex system and its application in urban transportation network[J]. Science & Technology Review, 2017 , 35(14) : 27 -33 . DOI: 10.3981/j.issn.1000-7857.2017.14.003

References

[1] 何平. 具有时变耦合时滞的复杂网络外同步研究[D]. 沈阳:东北大学信息科学与工程学院, 2014. He Ping. Investigation of outer synchronization of complex networks with time-varying coupling delay[D]. Shenyang:College of Information Science and Engineering, Northeastern University, 2014.
[2] 胡一竑, 朱道立, 李阳, 等. 成本驱动的加权网络演变模型[J]. 复杂系统与复杂性科学, 2009, 6(2):26-32. Hu Yihong, Zhu Daoli, Li Yang, et al. Cost-driven weighted network evolution model[J]. Complex Systems and Complexity Science, 2009, 6(2):26-32.
[3] Erdos P, Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5(1):17-60.
[4] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[5] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[6] 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与信息, 2006, 6(3):41-47. Gao Ziyou, Zhao Xiaomei, Huang Haijun, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47.
[7] 胡一竑. 基于复杂网络的交通网络复杂性研究[D]. 上海:复旦大学管理学院, 2008. Hu Yihong. Research on traffic network complexity based on complex network[D]. Shanghai:School of Management, Fudan University, 2008.
[8] 陈关荣. 复杂动力网络的研究——新世纪科学技术前沿的战略性课题之一[J]. 复杂系统与复杂性科学, 2015, 12(2):3-4. Chen Guanrong. Complex network:Research on system architecture[J]. Complex Systems and Complexity Science, 2015, 12(2):3-4.
[9] Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks[J]. Physical Review Letters, 2001, 87(27):278701.
[10] Bernardo M D, Garofalo F, Manfredi S, et al. Load distribution in small world networks[C]//International Conference Physics and Con trol. New York:IEEE, 2005:100-105.
[11] Yang H, Zhao F, Zhou T, et al. Load Distribution on Small-world Net works[J]. arXiv preprint cond-mat/0509354, 2005.
[12] Zheng J F, Gao Z Y, Zhao X M. Clustering and congestion effects on cascading failures of scale-free networks[J]. Europhysics Letters, 2007, 79(5):58002.
[13] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[14] Wardrop J G. Road paper some theoretical aspects of road traffic re search[J]. Proceedings of the Institution of Civil Engineers, 1952, 1(3):325-362.
[15] Beckmann M, McGuire C B, Winsten C B. Studies in the economics of transportation[R/OL].[2017-03-31]. https://supernet.isenberg.umass.edu/visuals/Boyce-bmw.pdf.
[16] LeBlanc L J. An algorithm for the discrete network design problem[J]. Transportation Science, 1975, 9(3):183-199.
[17] Sheffi Y. Urban transportation networks:Equilibrium analysis with mathematical programming methods[M]. Upper Saddle River, NJ:Pren tice-Hall, 1985.
[18] Smith M J. The existence, uniqueness and stability of traffic equilibria[J]. Transportation Research Part B:Methodological, 1979, 13(4):295-304.
[19] Smith M J. Two alternative definitions of traffic equilibrium[J]. Trans portation Research Part B:Methodological, 1984, 18(1):63-65.
[20] Patriksson M. The traffic assignment problem:Models and methods[M]. Mineola, NY:Courier Dover Publications, 2015.
[21] Yang H, Yagar S. Traffic assignment and traffic control in general free way-arterial corridor systems[J]. Transportation Research Part B:Meth odological, 1994, 28(6):463-486.
[22] Gao Z, Sun H, Shan L L. A continuous equilibrium network design model and algorithm for transit systems[J]. Transportation Research Part B:Methodological, 2004, 38(3):235-250.
[23] 高自友, 任华玲. 城市动态交通流分配模型与算法[M]. 北京:人民交通出版社, 2005. Gao Ziyou, Ren Hualing. Model and algorithm of urban dynamic traffic flow assignment[M]. Beijing:People's Communications Press, 2005.
[24] Wright C, Roberg P. The conceptual structure of traffic jams[J]. Trans port Policy, 1998, 5(1):23-35.
[25] Moreno Y, Gómez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4):630.
[26] 张毅媚, 晏克非. 城市交通拥挤机理的经济解析[J]. 同济大学学报(自然科学版), 2006, 34(3):359-362. Zhang Yimei, Yan Kefei. Traffic congestion mechanism analysis based on economic theory[J]. Journal of Tongji University(Natural Science), 2006, 34(3):359-362.
[27] Wu J J, Gao Z Y, Sun H J. Simulation of traffic congestion with SIR model[J]. Modern Physics Letters B, 2004, 18(30):1537-1542.
[28] Sun H J, Wu J J. Urban traffic congestion spreading in small world networks[J]. International Journal of Modern Physics B, 2005, 19(28):4239-4246.
[29] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[30] Wu J J, Gao Z Y, Sun H J. Model for dynamic traffic congestion in scale-free networks[J]. Europhysics Letters, 2006, 76(5):787.
[31] Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in con gested complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2007, 385(2):700-706.
[32] Wu J J, Sun H J, Gao Z Y. Cascading failures on weighted urban traf fic equilibrium networks[J]. Physica A:Statistical Mechanics and Its Applications, 2007, 386(1):407-413.
[33] Sugiyama Y, Fukui M, Kikuchi M, et al. Traffic jams without bottle necks:Experimental evidence for the physical mechanism of the for mation of a jam[J]. New Journal of Physics, 2008, 10(3):033001.
[34] Long J C, Gao Z Y, Ren H L, et al. Urban traffic congestion propaga tion and bottleneck identification[J]. Science in China Series F:Infor mation Sciences, 2008, 51(7):948-964.
[35] Wright C, Roberg P. The conceptual structure of traffic jams[J]. Trans port Policy, 1998, 5(1):23-35.
[36] Long J C, Gao Z Y, Ren H L, et al. Urban traffic congestion propaga tion and bottleneck identification[J]. Science in China Series F:Infor mation Sciences, 2008, 51(7):948-964.
[37] Gazis D C, Herman R. The moving and "phantom" bottlenecks[J]. Transportation Science, 1992, 26(3):223-229.
[38] Newell G F. A simplified theory of kinematic waves in highway traffic, part I:General theory[J]. Transportation Research Part B:Methodologi cal, 1993, 27(4):281-287.
[39] Daganzo C F, Laval J A. Moving bottlenecks:A numerical method that converges in flows[J]. Transportation Research Part B:Methodological, 2005, 39(9):855-863.
[40] Jenelius E, Petersen T, Mattsson L G. Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part A:Policy and Practice, 2006, 40(7):537-560.
[41] 姜锐. 交通流复杂动态特性的微观和宏观模式研究[D]. 合肥:中国科技大学工程科学学院, 2002. Jiang Rui. Study on the complex dynamic properties of traffic flow from the micro and macro modeling[D]. Hefei:College of Engineering Science, University of Science and Technology of China, 2002.
[42] 田琼, 黄海军, 杨海. 瓶颈处停车换乘logit随机均衡选择模型[J]. 管理科学学报, 2005, 8(1):1-6. Tian Qiong, Huang Haijun, Yan Hai. Stop at the bottleneck logit sto chastic equilibrium selection model[J]. Journal of Management Sci ence, 2005, 8(1):1-6.
[43] 李乐园, 张小宁, 张红军. 基于交通瓶颈的动态交通分配模型[J]. 系统工程理论与实践, 2006, 26(4):125-129. Li Leyuan, Zhang Xiaoning, Zhang Hongjun. A model of dynamic traf fic assignment based on traffic bottleneck with varying capacity[J]. Sys tem Engineering Theory & Practice, 2006, 26(4):125-129.
[44] Braess D, Nagurney A, Wakolbinger T. On a paradox of traffic plan ning[J]. Transportation Science, 2005, 39(4):446-450.
[45] Nagurney A, Boyce D. Preface to "on a paradox of traffic planning"[J]. Transportation Science, 2005, 39(4):443-445.
[46] Guimerà R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89(24):248701.
[47] Mondragón C R J. Optimal networks, congestion and Braess' paradox[C]//Proceedings from the 2006 Workshop on Interdisciplinary Sys tems Approach in Performance Evaluation and Design of Computer & Communications Systems. New York:ACM, 2006.
[48] Youn H, Gastner M T, Jeong H. Price of anarchy in transportation net works:efficiency and optimality control[J]. Physical Review Letters, 2008, 101(12):128701.
[49] Roughgarden T. The price of anarchy is independent of the network to pology[J]. Journal of Computer and System Sciences, 2003, 67(2):341-364.
[50] Roughgarden T. Selfish routing and the price of anarchy[M]. Cam bridge:MIT Press, 2005.
[51] Zhao X M, Gao Z Y. Topological effects on the performance of trans portation networks[J]. Chinese Physics Letters, 2007, 24(1):283.
[52] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[53] Tadié B, Thurner S, Rodgers G J. Traffic on complex networks:To wards understanding global statistical properties from microscopic den sity fluctuations[J]. Physical Review E, 2004, 69(3):036102.
[54] Guimera R, Arenas A, Díaz-Guilera A, et al. Dynamical properties of model communication networks[J]. Physical Review E, 2002, 66(2):026704.
[55] Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87(19):198701.
[56] Holme P. Congestion and centrality in traffic flow on complex networks[J]. Advances in Complex Systems, 2003, 6(2):163-176.
[57] Echenique P, Gómez-Gardenes J, Moreno Y. Dynamics of jamming transitions in complex networks[J]. Europhysics Letters, 2005, 71(2):325.
[58] Ashton D J, Jarrett T C, Johnson N F. Effect of congestion costs on shortest paths through complex networks[J]. Physical Review Letters, 2005, 94(5):058701.
[59] Guimerà R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89(24):248701.
[60] Moreno Y, Pastor-Satorras R, Vázquez A, et al. Critical load and con gestion instabilities in scale-free networks[J]. Europhysics Letters, 2003, 62(2):292.
[61] Gao Z Y, Wu J J, Sun H J. Solution algorithm for the bi-level discrete network design problem[J]. Transportation Research Part B:Method ological, 2005, 39(6):479-495.
[62] Kim D H, Noh J D, Jeong H. Scale-free trees:The skeletons of com plex networks[J]. Physical Review E, 2004, 70(4):046126.
[63] Song C, Havlin S, Makse H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024):392-395.
[64] Yook S H, Radicchi F, Meyer-Ortmanns H. Self-similar scale-free networks and disassortativity[J]. Physical Review E, 2005, 72(4):045105.
[65] Dorogovtsev S N, Goltsev A V, Mendes J F F. K-core architecture and K-core percolation on complex networks[J]. Physica D:Nonlinear Phe nomena, 2006, 224(1):7-19.
[66] Dorogovtsev S N, Goltsev A V, Mendes J F F. K-core organization of complex networks[J]. Physical Review Letters, 2006, 96(4):040601.
[67] Zhou S, Mondragón R J. The rich-club phenomenon in the internet to pology[J]. IEEE Communications Letters, 2004, 8(3):180-182.
[68] Albert R, Jeong H, Barabási A L. Attack and error tolerance of com plex networks[J]. Nature, 2000, 406(6794):378-382.
[69] Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the internet to random breakdowns[J]. Physical review letters, 2000, 85(21):4626.
[70] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility:Percolation on random graphs[J]. Physical Review Let ters, 2000, 85(25):5468.
[71] Moreno Y, Gómez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4):630.
[72] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6):065102.
[73] Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in con gested complex networks[J]. Physica A:Statistical Mechanics and its Applications, 2007, 385(2):700-706.
[74] Wu J J, Gao Z Y, Sun H J. Cascade and breakdown in scale-free net works with community structure[J]. Physical Review E, 2006, 74(6):066111.
[75] Broder A, Kumar R, Maghoul F, et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1):309-320.
[76] 谭跃进, 吴俊, 邓宏钟, 等. 复杂网络抗毁性研究综述[J]. 系统工程, 2006, 24(10):1-5. Tan Yuejin, Wu Jun, Deng Hongzhong, et al. A review of studies on the destruction resistance of complex networks[J]. Systems Engineer ing, 2006, 24(10):1-5.
[77] Mine H, Kawai H. Mathematics for reliability analysis[M]. Tokyo:Asakura-shoten, 1982.
[78] Bell M G H, Iida Y. Transportation network analysis[M]. United States:Wiley, 1997.
[79] Asakura Y, Kashiwadani M. Road network reliability caused by daily fluctuation of traffic flow[C]//19th PTRC Summer Annual Meeting. Brighton:University of Sussex, 1991.
[80] Asakura Y. Reliability measures of an origin and destination pair in a deteriorated road network with variable flows[M]. Transportation Net works:Recent Methodological Advances. Amsterdam:Elsevier, 1999.
[81] Chen A, Yang H, Lo H K, et al. Capacity reliability of a road network:An assessment methodology and numerical results[J]. Transportation Research Part B:Methodological, 2002, 36(3):225-252.
Outlines

/