[1] 何平. 具有时变耦合时滞的复杂网络外同步研究[D]. 沈阳:东北大学信息科学与工程学院, 2014. He Ping. Investigation of outer synchronization of complex networks with time-varying coupling delay[D]. Shenyang:College of Information Science and Engineering, Northeastern University, 2014.
[2] 胡一竑, 朱道立, 李阳, 等. 成本驱动的加权网络演变模型[J]. 复杂系统与复杂性科学, 2009, 6(2):26-32. Hu Yihong, Zhu Daoli, Li Yang, et al. Cost-driven weighted network evolution model[J]. Complex Systems and Complexity Science, 2009, 6(2):26-32.
[3] Erdos P, Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5(1):17-60.
[4] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[5] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[6] 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与信息, 2006, 6(3):41-47. Gao Ziyou, Zhao Xiaomei, Huang Haijun, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47.
[7] 胡一竑. 基于复杂网络的交通网络复杂性研究[D]. 上海:复旦大学管理学院, 2008. Hu Yihong. Research on traffic network complexity based on complex network[D]. Shanghai:School of Management, Fudan University, 2008.
[8] 陈关荣. 复杂动力网络的研究——新世纪科学技术前沿的战略性课题之一[J]. 复杂系统与复杂性科学, 2015, 12(2):3-4. Chen Guanrong. Complex network:Research on system architecture[J]. Complex Systems and Complexity Science, 2015, 12(2):3-4.
[9] Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks[J]. Physical Review Letters, 2001, 87(27):278701.
[10] Bernardo M D, Garofalo F, Manfredi S, et al. Load distribution in small world networks[C]//International Conference Physics and Con trol. New York:IEEE, 2005:100-105.
[11] Yang H, Zhao F, Zhou T, et al. Load Distribution on Small-world Net works[J]. arXiv preprint cond-mat/0509354, 2005.
[12] Zheng J F, Gao Z Y, Zhao X M. Clustering and congestion effects on cascading failures of scale-free networks[J]. Europhysics Letters, 2007, 79(5):58002.
[13] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[14] Wardrop J G. Road paper some theoretical aspects of road traffic re search[J]. Proceedings of the Institution of Civil Engineers, 1952, 1(3):325-362.
[15] Beckmann M, McGuire C B, Winsten C B. Studies in the economics of transportation[R/OL].[2017-03-31]. https://supernet.isenberg.umass.edu/visuals/Boyce-bmw.pdf.
[16] LeBlanc L J. An algorithm for the discrete network design problem[J]. Transportation Science, 1975, 9(3):183-199.
[17] Sheffi Y. Urban transportation networks:Equilibrium analysis with mathematical programming methods[M]. Upper Saddle River, NJ:Pren tice-Hall, 1985.
[18] Smith M J. The existence, uniqueness and stability of traffic equilibria[J]. Transportation Research Part B:Methodological, 1979, 13(4):295-304.
[19] Smith M J. Two alternative definitions of traffic equilibrium[J]. Trans portation Research Part B:Methodological, 1984, 18(1):63-65.
[20] Patriksson M. The traffic assignment problem:Models and methods[M]. Mineola, NY:Courier Dover Publications, 2015.
[21] Yang H, Yagar S. Traffic assignment and traffic control in general free way-arterial corridor systems[J]. Transportation Research Part B:Meth odological, 1994, 28(6):463-486.
[22] Gao Z, Sun H, Shan L L. A continuous equilibrium network design model and algorithm for transit systems[J]. Transportation Research Part B:Methodological, 2004, 38(3):235-250.
[23] 高自友, 任华玲. 城市动态交通流分配模型与算法[M]. 北京:人民交通出版社, 2005. Gao Ziyou, Ren Hualing. Model and algorithm of urban dynamic traffic flow assignment[M]. Beijing:People's Communications Press, 2005.
[24] Wright C, Roberg P. The conceptual structure of traffic jams[J]. Trans port Policy, 1998, 5(1):23-35.
[25] Moreno Y, Gómez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4):630.
[26] 张毅媚, 晏克非. 城市交通拥挤机理的经济解析[J]. 同济大学学报(自然科学版), 2006, 34(3):359-362. Zhang Yimei, Yan Kefei. Traffic congestion mechanism analysis based on economic theory[J]. Journal of Tongji University(Natural Science), 2006, 34(3):359-362.
[27] Wu J J, Gao Z Y, Sun H J. Simulation of traffic congestion with SIR model[J]. Modern Physics Letters B, 2004, 18(30):1537-1542.
[28] Sun H J, Wu J J. Urban traffic congestion spreading in small world networks[J]. International Journal of Modern Physics B, 2005, 19(28):4239-4246.
[29] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[30] Wu J J, Gao Z Y, Sun H J. Model for dynamic traffic congestion in scale-free networks[J]. Europhysics Letters, 2006, 76(5):787.
[31] Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in con gested complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2007, 385(2):700-706.
[32] Wu J J, Sun H J, Gao Z Y. Cascading failures on weighted urban traf fic equilibrium networks[J]. Physica A:Statistical Mechanics and Its Applications, 2007, 386(1):407-413.
[33] Sugiyama Y, Fukui M, Kikuchi M, et al. Traffic jams without bottle necks:Experimental evidence for the physical mechanism of the for mation of a jam[J]. New Journal of Physics, 2008, 10(3):033001.
[34] Long J C, Gao Z Y, Ren H L, et al. Urban traffic congestion propaga tion and bottleneck identification[J]. Science in China Series F:Infor mation Sciences, 2008, 51(7):948-964.
[35] Wright C, Roberg P. The conceptual structure of traffic jams[J]. Trans port Policy, 1998, 5(1):23-35.
[36] Long J C, Gao Z Y, Ren H L, et al. Urban traffic congestion propaga tion and bottleneck identification[J]. Science in China Series F:Infor mation Sciences, 2008, 51(7):948-964.
[37] Gazis D C, Herman R. The moving and "phantom" bottlenecks[J]. Transportation Science, 1992, 26(3):223-229.
[38] Newell G F. A simplified theory of kinematic waves in highway traffic, part I:General theory[J]. Transportation Research Part B:Methodologi cal, 1993, 27(4):281-287.
[39] Daganzo C F, Laval J A. Moving bottlenecks:A numerical method that converges in flows[J]. Transportation Research Part B:Methodological, 2005, 39(9):855-863.
[40] Jenelius E, Petersen T, Mattsson L G. Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part A:Policy and Practice, 2006, 40(7):537-560.
[41] 姜锐. 交通流复杂动态特性的微观和宏观模式研究[D]. 合肥:中国科技大学工程科学学院, 2002. Jiang Rui. Study on the complex dynamic properties of traffic flow from the micro and macro modeling[D]. Hefei:College of Engineering Science, University of Science and Technology of China, 2002.
[42] 田琼, 黄海军, 杨海. 瓶颈处停车换乘logit随机均衡选择模型[J]. 管理科学学报, 2005, 8(1):1-6. Tian Qiong, Huang Haijun, Yan Hai. Stop at the bottleneck logit sto chastic equilibrium selection model[J]. Journal of Management Sci ence, 2005, 8(1):1-6.
[43] 李乐园, 张小宁, 张红军. 基于交通瓶颈的动态交通分配模型[J]. 系统工程理论与实践, 2006, 26(4):125-129. Li Leyuan, Zhang Xiaoning, Zhang Hongjun. A model of dynamic traf fic assignment based on traffic bottleneck with varying capacity[J]. Sys tem Engineering Theory & Practice, 2006, 26(4):125-129.
[44] Braess D, Nagurney A, Wakolbinger T. On a paradox of traffic plan ning[J]. Transportation Science, 2005, 39(4):446-450.
[45] Nagurney A, Boyce D. Preface to "on a paradox of traffic planning"[J]. Transportation Science, 2005, 39(4):443-445.
[46] Guimerà R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89(24):248701.
[47] Mondragón C R J. Optimal networks, congestion and Braess' paradox[C]//Proceedings from the 2006 Workshop on Interdisciplinary Sys tems Approach in Performance Evaluation and Design of Computer & Communications Systems. New York:ACM, 2006.
[48] Youn H, Gastner M T, Jeong H. Price of anarchy in transportation net works:efficiency and optimality control[J]. Physical Review Letters, 2008, 101(12):128701.
[49] Roughgarden T. The price of anarchy is independent of the network to pology[J]. Journal of Computer and System Sciences, 2003, 67(2):341-364.
[50] Roughgarden T. Selfish routing and the price of anarchy[M]. Cam bridge:MIT Press, 2005.
[51] Zhao X M, Gao Z Y. Topological effects on the performance of trans portation networks[J]. Chinese Physics Letters, 2007, 24(1):283.
[52] Wu J J, Gao Z Y, Sun H J, et al. Congestion in different topologies of traffic networks[J]. Europhysics Letters, 2006, 74(3):560.
[53] Tadié B, Thurner S, Rodgers G J. Traffic on complex networks:To wards understanding global statistical properties from microscopic den sity fluctuations[J]. Physical Review E, 2004, 69(3):036102.
[54] Guimera R, Arenas A, Díaz-Guilera A, et al. Dynamical properties of model communication networks[J]. Physical Review E, 2002, 66(2):026704.
[55] Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87(19):198701.
[56] Holme P. Congestion and centrality in traffic flow on complex networks[J]. Advances in Complex Systems, 2003, 6(2):163-176.
[57] Echenique P, Gómez-Gardenes J, Moreno Y. Dynamics of jamming transitions in complex networks[J]. Europhysics Letters, 2005, 71(2):325.
[58] Ashton D J, Jarrett T C, Johnson N F. Effect of congestion costs on shortest paths through complex networks[J]. Physical Review Letters, 2005, 94(5):058701.
[59] Guimerà R, Díaz-Guilera A, Vega-Redondo F, et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89(24):248701.
[60] Moreno Y, Pastor-Satorras R, Vázquez A, et al. Critical load and con gestion instabilities in scale-free networks[J]. Europhysics Letters, 2003, 62(2):292.
[61] Gao Z Y, Wu J J, Sun H J. Solution algorithm for the bi-level discrete network design problem[J]. Transportation Research Part B:Method ological, 2005, 39(6):479-495.
[62] Kim D H, Noh J D, Jeong H. Scale-free trees:The skeletons of com plex networks[J]. Physical Review E, 2004, 70(4):046126.
[63] Song C, Havlin S, Makse H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024):392-395.
[64] Yook S H, Radicchi F, Meyer-Ortmanns H. Self-similar scale-free networks and disassortativity[J]. Physical Review E, 2005, 72(4):045105.
[65] Dorogovtsev S N, Goltsev A V, Mendes J F F. K-core architecture and K-core percolation on complex networks[J]. Physica D:Nonlinear Phe nomena, 2006, 224(1):7-19.
[66] Dorogovtsev S N, Goltsev A V, Mendes J F F. K-core organization of complex networks[J]. Physical Review Letters, 2006, 96(4):040601.
[67] Zhou S, Mondragón R J. The rich-club phenomenon in the internet to pology[J]. IEEE Communications Letters, 2004, 8(3):180-182.
[68] Albert R, Jeong H, Barabási A L. Attack and error tolerance of com plex networks[J]. Nature, 2000, 406(6794):378-382.
[69] Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the internet to random breakdowns[J]. Physical review letters, 2000, 85(21):4626.
[70] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility:Percolation on random graphs[J]. Physical Review Let ters, 2000, 85(25):5468.
[71] Moreno Y, Gómez J B, Pacheco A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4):630.
[72] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6):065102.
[73] Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in con gested complex networks[J]. Physica A:Statistical Mechanics and its Applications, 2007, 385(2):700-706.
[74] Wu J J, Gao Z Y, Sun H J. Cascade and breakdown in scale-free net works with community structure[J]. Physical Review E, 2006, 74(6):066111.
[75] Broder A, Kumar R, Maghoul F, et al. Graph structure in the web[J]. Computer Networks, 2000, 33(1):309-320.
[76] 谭跃进, 吴俊, 邓宏钟, 等. 复杂网络抗毁性研究综述[J]. 系统工程, 2006, 24(10):1-5. Tan Yuejin, Wu Jun, Deng Hongzhong, et al. A review of studies on the destruction resistance of complex networks[J]. Systems Engineer ing, 2006, 24(10):1-5.
[77] Mine H, Kawai H. Mathematics for reliability analysis[M]. Tokyo:Asakura-shoten, 1982.
[78] Bell M G H, Iida Y. Transportation network analysis[M]. United States:Wiley, 1997.
[79] Asakura Y, Kashiwadani M. Road network reliability caused by daily fluctuation of traffic flow[C]//19th PTRC Summer Annual Meeting. Brighton:University of Sussex, 1991.
[80] Asakura Y. Reliability measures of an origin and destination pair in a deteriorated road network with variable flows[M]. Transportation Net works:Recent Methodological Advances. Amsterdam:Elsevier, 1999.
[81] Chen A, Yang H, Lo H K, et al. Capacity reliability of a road network:An assessment methodology and numerical results[J]. Transportation Research Part B:Methodological, 2002, 36(3):225-252.