[1] Valocchi M, Juliano J, Schurr A. Switching perspectives: Creating new business models for a changing world of energy[M]//Smart Grid Applications and Developments. London: Springer London, 2014: 165-182.
[2] Fri R W, Savitz M L. Rethinking energy innovation and social science[J]. Energy Research & Social Science, 2014, 1: 183-187.
[3] 隋智通, 隋升, 罗冬梅. 燃料电池及其应用[M]. 北京: 冶金工业出版社, 2004. Sui Zhitong, Sui Sheng, Luo Dongmei. Fuel cell and its applications[M]. Beijing: Metallurgical Industry Press, 2004.
[4] 陈哲艮. 氢能与燃料电池[J]. 科技产业, 2001(10): 19-21. Chen Zhegen. Fuel cells and hydrogen[J]. Technology Industry, 2001 (10): 19-21.
[5] 王亚琴, 张宏伟. 燃料电池用非氟质子交换膜研究现状[J]. 安徽建筑工业学院学报(自然科学版), 2006(3): 18-21. Wang Yaqin, Zhang Hongwei. Research status of non-fluorine proton exchange membrane for fuel cells[J]. Journal of Anhui Institute of Architecture (Natural Science), 2006(3): 18-21.
[6] 刘晓秋, 吕雪艳, 李胜海. 燃料电池用磺化聚酰亚胺质子交换膜材料的制备与性质[J]. 分子科学学报, 2009(3): 30-32. Liu Xiaoqiu, Lü Xueyan, Li Shenghai. The Preparation and properties of sulfonated polyimide proton exchange membrane for fuel cells[J]. Journal of Molecular Science, 2009(3): 30-32.
[7] 林才顺, 魏浩杰. 氢能利用与制氢储氢技术研究现状[J]. 节能与环保, 2010(2): 42-43. Lin Caishun, Wei Haojie. Research status of hydrogen energy utilization and hydrogen storage technology[J]. Energy Conservation and Environmental Protection, 2010, (2): 42-43.
[8] 王华文, 齐国祯. 燃料电池技术研究进展及产业化[J]. 高桥石化, 2005, 20(3): 46. Wang Huawen, Qi Guozhen. Research progress and industrialization of fuel cell technology[J]. Gao Qiao Petro-Chemical, 2005, 20(3): 46.
[9] 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003. Yi Baolian. Fuel cells:Principles, technologies and applications[M]. Beijing: Chemical Industry Press, 2003.
[10] Zhang Z, Xu T. Poly(ether ketone)s bearing pendent sulfonate groups via copolyacylation of a sulfonated monomer and isomeric AB-type comonomers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2013, 52(2): 200-207.
[11] Cui M, Zhang Z, Yuan T, et al. Proton-conducting membranes based on side-chain-type sulfonated poly(ether ketone/ether benzimidazole)s via, one-pot condensation[J]. Journal of Membrane Science, 2014, 465 (13): 100-106.
[12] And Z S, Holdcroft S. Synthesis and proton conductivity of partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers[J]. Macromolecules, 2005, 38(10): 4193-4201.
[13] Li N, Yan T, Li Z, et al. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes[J]. Energy & Environmental Science, 2012, 5(7): 7888-7892.
[14] Li G, Xie J, Cai H, et al. New highly proton-conducting membrane based on sulfonated poly(arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39 (6): 2639-2648.
[15] Guo X, Yuan S, Fang J. Synthesis and properties of novel sulfonated polyimides from 4, 4′-(biphenyl-4, 4′-diyldi (oxo)) bis (1, 8-naphthalic anhydride)[J]. Polymer, 2015, 59: 207-214.
[16] Lee W H, Kang H L, Dong W S, et al. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2015, 282(5): 211-222.
[17] Li G, Zhao C, Cui Y, et al. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes with excellent mechanical properties and selectivity for direct methanol fuel cells[J]. Rsc Advances, 2016, 6(27): 23025-23032.
[18] Jukk K, Alexeyeva N, Ritslaid P, et al. Electrochemical reduction of oxygen on heat-treated pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution[J]. Electrocatalysis, 2013, 4(1): 42-48.
[19] Liu Y, Xu C. Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability[J]. ChemSusChem, 2013, 6(1): 78-84.
[20] 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. Nie Yao, Ding Wei, Wei Zidong. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. Journal of Chemical Industry and Engineering, 2015, 66(9): 3305-3318.
[21] Ding W, Xia M R, Wei Z D, et al. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction[J]. Chemical Communications, 2014, 50 (50): 6660-6663.
[22] Yao N, Wei D, Wei Z. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. Ciesc Journal, 2015.
[23] Yang Z, Ran J, Wu B, et al. Stability challenge in anion exchange membrane for fuel cells[J]. Current Opinion in Chemical Engineering, 2016, 12: 22-30.
[24] Chempath S, Einsla B R, Pratt L R, et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes[J]. Journal of Physical Chemistry C, 2008, 112(9): 3179-3182.
[25] Lai A N, Wang L S, Lin C X, et al. Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells[J]. Journal of Membrane Science, 2015, 481: 9-18.
[26] Wang X, Li M, Golding B T, et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10022-10026.
[27] Hebeish A, Waly A, Abdel-Mohdy F A, et al. Synthesis and characterization of cellulose ion exchangers. I. Polymerization of glycidyl methacrylate, dimethylaminoethyl methacrylate, and acrylic acid with cotton cellulose using thiocarbonate-H2O2 redox system[J]. Journal of Applied Polymer Science, 1997, 66(6): 1029-1037.
[28] Disabb-Miller M L, Zha Y, DeCarlo A J, et al. Water uptake and ion mobility in cross-linked bis (terpyridine) ruthenium-based anion exchange membranes[J]. Macromolecules, 2013, 46(23): 9279-9287.
[29] Kwasny M T, Tew G N. Expanding metal cation options in polymeric anion exchange membranes[J]. Journal of Materials Chemistry A, 2017.
[30] Pan J, Lu S, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced Functional Materials, 2010, 20(2): 312-319.
[31] Xu T. Ion exchange membranes: state of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1): 1-29.
[32] Wu L, Xu T, Wu D, et al. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. Journal of Membrane Science, 2008, 310(1): 577-585..
[33] Yan X, Gu S, He G, et al. Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell[J]. Journal of Power Sources, 2014, 250: 90-97.
[34] Liu G, Shang Y, Xie X, et al. Synthesis and characterization of anion exchange membranes for alkaline direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37: 848-53.
[35] Wu L, Xu T, Wu D, et al. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. Journal of Membrane Science, 2008, 310(1): 577-585.
[36] Lin X, Liu Y, Poynton S D, et al. Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy[J]. Journal of Power Sources, 2013, 233: 259-268.
[37] 潘杰峰. 静电纺丝技术制备离子交换膜[D]. 合肥: 中国科学技术大学, 2015. Pan Jiefeng. The preparation of ion exchange membrane based on electrospinning[D]. Hefei: University of Science and Technology of China, 2015.