Special lssues

Autonomous control technology of unmanned aerial system and its challenge

  • SHI Pengfei
Expand
  • Flight Automatic Control Research Institute, Xi'an 710065, China

Received date: 2016-12-12

  Revised date: 2017-03-02

  Online published: 2017-04-18

Abstract

The highly dynamic nature, uncertainty and complexity of the flight environment compose the main challenges to the design of autonomous unmanned aerial systems (UAS). Recent advances in artificial intelligence and high performance computing technologies provide an opportunity for the further development of autonomous UAS. This work introduces the definition and connotation of autonomous control of UAS, summarizes the state of the art technology in this field, and proposes candidate solutions to the main challenges from the perspectives of IQ, EQ and AQ.

Cite this article

SHI Pengfei . Autonomous control technology of unmanned aerial system and its challenge[J]. Science & Technology Review, 2017 , 35(7) : 32 -38 . DOI: 10.3981/j.issn.1000-7857.2017.07.003

References

[1] 杨晖. 无人作战飞机自主控制技术研究[J]. 飞行力学, 2006, 24(2): 1-4. Yang Hui. Research on UCAV autonomous control technology[J]. Flight Dynamics, 2006, 24(2): 1-4.
[2] Cambone S. Unmanned Aircraft Systems Roadmap 2005-2030[M]. Office of the Secretary of Defense, 2005.
[3] Nilsson N J. Shakey the robot[R/OL].[2017-02-18]. http://www.cs.uml.edu/~holly/91.549/readings/629.pdf.
[4] Campbell M, Hoane A J, Hsu F. Deep blue[J]. Artificial intelligence, 2002, 134(1): 57-83.
[5] Ando R K. BioCreative Ⅱ gene mention tagging system at IBM Watson[C/OL].[2017-02-18]. http://riejohnson.com/rie/Ando_biocreative_cr.pdf.
[6] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[7] 淳于江民, 张珩. 无人机的发展现状与展望[J]. 飞航导弹, 2005(2): 23. Chunyu Jiangmin, Zhang Heng. Survey on the developments of UAVs[J]. Aerodynamic Missle Journal, 2005(2): 23.
[8] 吴森堂, 费玉华. 飞行控制系统[M]. 北京: 北京航空航天大学出版社, 2005. Wu Sentang, Fei Yuhua. Flight control system[M]. Beijing: Beihang University Press, 2005.
[9] 朱华勇, 牛轶峰, 沈林成, 等. 无人机系统自主控制技术研究现状与发展趋势[J]. 国防科技大学学报, 2010, 32(3): 115-120. Zhu Huayong, Niu Yifeng, Shen Lincheng, et al. State of the art and trends of autonomous control of UAV systems[J]. Journal of National University of Defense Technology, 2010, 32(3): 115-120.
[10] 高晖. 无人机航路规划研究[J]. 南京航空航天大学学报, 2001, 33(2): 135-138. Gao Hui. Study on UAV route planning[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(2): 135-138.
[11] 叶媛媛, 闵春平, 沈林成, 等. 基于VORONOI 图的无人机空域任务规划方法研究[J]. 系统仿真学报, 2005, 17(6): 1353-1355. Ye Yuanyuan, Min Chunping, Shen Lincheng, et al. VORONOI Diagram Based Spatial Mission Planning for UAVs[J]. Journal of System Simulation, 2005, 17(6): 1353-1355.
[12] 朱荣刚, 姜长生, 邹庆元, 等. 新一代歼击机超机动飞行的动态逆控制[J]. 航空学报, 2003, 24(3): 242-245. Zhu Ronggang, Jiang Changsheng, Zou Qingyuan, et al. Study on dynamic inversion control and simulation of supermaneuverable flight of the new generation fighter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 242-245.
[13] 唐强, 朱志强, 王建元. 国外无人机自主飞行控制研究[J]. 系统工程与电子技术, 2004, 26(3): 418-422. Tang Qiang, Zhu Zhiqiang, Wang Jianyuan. Survey of foreign researches on autonomous flight control for unmanned aerial vehicles[J]. Journal of Systems Engineering and Electronics, 2004, 26(3): 418-422.
[14] 陈志伟. 无人机空战攻防一体化自主攻击决策研究[D]. 南京: 南京航空航天大学, 2011. Chen Zhiwei. Study on autonomous attack-defense integrating decision making of UAVs[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[15] Wise K A. First flight of the X-45A unmanned combat air vehicle (UCAV) [C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Austin: AIAA, 2003: AIAA 2003-5320.
[16] 方勇. 未来无人化战争的引领者——美国舰载无人攻击机X-47B 发展及影响[J]. 军事文摘, 2015(13): 12. Fang Yong. The leading role in future unmanned combat-the development and influence of X-47B carrier-based UCAV[J]. Military Digest, 2015(13): 12.
[17] Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(144): 1000144. doi: 10.4172/2167-0374.1000144.
[18] Wise K A. First flight of the X-45A unmanned combat air vehicle (UCAV)[C]//AIAA Guidance, Navigation, and Control Conference. Austin: AIAA, 2003: 26.
[19] Michael N, Mellinger D, Lindsey Q, et al. The grasp multiple micro-uav testbed[J]. IEEE Robotics & Automation Magazine, 2010, 17(3): 56-65.
[20] 魏凯, 朱振宇. X-47B 无人机飞行试验进展与应用前景分析[J]. 飞航导弹, 2014(5): 6. Wei Kai, Zhu Zhenyu. Analysis of experimental advances and applications of the X-47B UCAV[J]. Aerodynamic Missle Journal, 2014(5): 6.
[21] Bhalla P. Emerging trends in unmanned aerial systems[R/OL]. [2017-02-18]. http://www.claws.in/images/journals_doc/1119543205_Emergingtrendsinunmannedaerialsystems.pdf.
[22] Bekmezci I, Sahingoz O K, Temel Ş. Flying ad-hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254-1270.
[23] Koucheryavy A, Vladyko A, Kirichek R. State of the art and research challenges for public flying ubiquitous sensor networks[M]//Internet of Things, Smart Spaces, and Next Generation Networks and Systems. New York: Springer, 2015: 299-308.
[24] 陶于金, 李沛峰. 无人机系统发展与关键技术综述[J]. 航空制造技术, 2014, 464(20): 34-39. Yao Yujin, Li Peifeng. Development and key technology of UAV[J]. Aeronautical Manufacturing Technology, Beijing, 2014, 464(20): 34-39.
[25] Bennett J W, Atkinson G J, Mecrow B C, et al. Fault-tolerant design considerations and control strategies for aerospace drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2049-2058.
[26] 姜斌, 杨浩. 飞控系统主动容错控制技术综述[J]. 系统工程与电子技术, 2007, 29(12): 2106-2110. Jiang Bin, Yang Hao. Survey of the active fault-tolerant control for flight control system [J]. Journal of Systems Engineering and Electronics, 2007, 29(12): 2106-2110.
[27] 朱家强, 郭锁凤. 基于神经网络的超机动飞机自适应重构控制[J]. 航空学报, 2003, 24(3): 246-250. Zhu Jiaqiang, Guo Suofeng. Neural-net based adapative reconfigurable control for a super maneuverable aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 246-250.
[28] 李卫琪, 陈宗基. 非线性飞机对象操纵面故障的控制律重构[J]. 北京航空航天大学学报, 2003, 29(5): 428-433. Li Weiqi, Chen Zongji. Non-linear reconfigurable control of fault control surfaces of aircrafts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5): 428-433.
[29] 钟友武, 杨凌宇, 申功璋. 多操纵面飞机综合重构飞行控制方法[J]. 北京航空航天大学学报, 2009(11): 1320-1324. Zhong Youwu, Yang Lingyu, Shen Gongzhang. Reconfigurable control of aircrafts with multiple control surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009(11): 1320-1324.
[30] Bochmann G V. Protocol specification for OSI[J]. Computer Networks and ISDN Systems, 1990, 18(3): 167-184.
[31] Hayes-Roth F, Waterman D A, Lenat D B. Building expert system[M]. New Jersey: Addison-Wesley, 1983.
[32] Coulom R. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search[C]//Proceedings of the 5th international conference on Computers and games. Berlin: Springer-Verlag, 2006: 72-83.
[33] Rawlings J B, Muske K R. The stability of constrained receding horizon control[J]. IEEE transactions on automatic control, 1993, 38(10): 1512-1516.
[34] Roberge V, Tarbouchi M, Labonté G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 132-141.
[35] Wolf M. High-performance embedded computing: Applications in cyber-physical systems and mobile computing[M]. 2nd ed. Beijing: China Machine Press, 2014.
[36] Nalepka J P, Hinchman J L. Automated aerial refueling: Extending the effectiveness of unmanned air vehicles[C]. AIAA Modeling and Simulation Technologies Conference and Exhibit. NewYork: AIAA, 2005: 15-18.
[37] Fezans N, Jann T, Gerlach T, et al. Modelling and simulation for aerial refueling automation research for manned and unmanned aircraft[R/OL]. [2017-02-18]. http://elib.dlr.de/106629/1/LUBETA_DLRK2016.pdf..
[38] İ lker B, Sahingoz O K, Şamil T. Flying Ad-Hoc Networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(11): 1254-1270.
[39] Corson S, Macker J. Mobile Ad Hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations[J]. Rfc Ietf Network Working Group, 1999, 36(5): 309-310.
[40] Li F, Wang Y. Routing in vehicular ad hoc networks: A survey[J]. IEEE Vehicular technology magazine, 2007, 2(2): 12-22.
[41] Ollero A, Lacroix S, Merino L, et al. Multiple eyes in the skies: Architecture and perception issues in the COMETS unmanned air vehicles project[J]. IEEE robotics & automation magazine, 2005, 12(2): 46-57.
[42] Simonoff A J. Interactive communication system permitting increased collaboration between users: U.S. Patent 6,463,460[P]. 2002-10-8.
[43] Ollero A, Maza I. Multiple heterogeneous unmanned aerial vehicles[M]. New York: Springer, 2007.
[44] Kingston D, Beard R W, Holt R S. Decentralized perimeter surveillance using a team of UAVs[J]. IEEE Transactions on Robotics, 2008, 24(6): 1394-1404.
[45] Beard R W, McLain T W. Multiple UAV cooperative search under collision avoidance and limited range communication constraints[C]//Decision and Control, 2003. Proceedings. 42nd IEEE Conference on. NewYork: IEEE, 2003, 1: 25-30.
[46] De Neufville R, Odoni A, Belobaba P, et al. Airport systems: planning, design and management[M]. New York: McGraw-Hil, 2013.
[47] Pallottino L, Feron E M, Bicchi A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE transactions on intelligent transportation systems, 2002, 3(1): 3-11.
[48] Jaw L C. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step[C]//ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2005: 683-695.
[49] Rao M, Xia Q, Ying Y. Fault-tolerant control[M]//Modeling and Advanced Control for Process Industries. London: Springer-Verlag, 1994: 157-191.
Outlines

/