[1] 王英勋, 蔡志浩. 无人机的自主飞行控制[J]. 航空制造技术, 2009(8): 26-31. Wang Yingxun, Cai Zhihao. Autonomous flight control of unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2009(8): 26-31.
[2] 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32 (6): 1075-1083. Chen Zongji, Wei Jinzhong, Wang Yingxun, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (6): 1075-1083.
[3] Qiu H X, Chen W, Dou Rui, et al. Fully autonomous flying: from collective motion in bird flocks to unmanned aerial vehicle autonomous swarms[J]. Science China Information Sciences, 2015, 58(12): 1-3.
[4] Duan H B, Li P. Bio-inspired computation in unmanned aerial vehicles[M]. Heidelberg: Springer-Verlag Berlin, 2014.
[5] 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. Niu Yifeng, Xiao Xiangjiang, Ke Guanyan. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34(5), 37-43.
[6] Duan H B, Liu S Q. Unmanned air/ground vehicles heterogeneous cooperative techniques: current status and prospects[J]. Science China Technological Sciences, 2010, 53(5): 1349-1355.
[7] Vicsek T, Zafeiris A. Collective motion[J]. Physics Reports, 2012, 517(3-4): 71-140.
[8] 段海滨, 孙昌浩, 史玉回. 群体智能研究进展[J]. 中国自动化学会通讯, 2013, 34(3): 65-74. Duan Haibin, Sun Changhao, Shi Yuhui. Progress in swarm intelligence[J]. Communications of CAA, 2013, 34(3): 65-74.
[9] 段海滨, 张祥银, 徐春芳. 仿生智能计算[M]. 北京: 科学出版社, 2011. Duan Haibin, Zhang Xiangyin, Xu Chunfang. Bio-inspired computing[M]. Beijing: Science Press, 2011.
[10] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks[J]. Proceedings of the National Academy of Sciences, 2010, 107(26): 11865-11870.
[11] Bialek W, Cavagna A, Giardina I, et al. Social interactions dominate speed control in poising natural flocks near criticality[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7212-7217.
[12] Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226-1229.
[13] Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.
[14] 段海滨. 蚁群算法原理及其应用[M]. 北京: 科学出版社, 2005. Duan Haibin. Ant colony algorithms: theory and applications[M]. Beijing: Science Press, 2005.
[15] Bonabeau E G, Dorigo M, Theraulaz G. Inspiration for optimization from social insect Behavior[J]. Nature, 2000, 406(6791): 39-42.
[16] Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007, 190 (2): 1502-1513.
[17] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
[18] Usherwood J R, Stavrou M, Lowe J C, et al. Flying in a flock comes at a cost in pigeons[J]. Nature, 2011, 474(7352): 494-497.
[19] 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304. Qiu Huaxin, Duan Haibin, Fan Yanming. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory & Applications, 2015, 32(10): 1298-1304.
[20] Duan H, Qiao P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37.
[21] Nagy M, Ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890-893.
[22] Swain D T, Couzin I D, Leonard N E. Real-time feedback-controlled robotic fish for behavioral experiments with fish schools[J]. Proceedings of the IEEE, 2012, 100(1): 150-163.
[23] 段海滨, 邵山, 苏丙未, 等. 基于仿生智能的无人作战飞机控制技术发展新思路[J]. 中国科学: 技术科学, 2010, 40(8): 853-860. Duan Haibin, Shao Shan, Su Bingwei, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J]. Science China Technological Sciences, 2010, 40(8): 853-860.
[24] Reynolds C W. Flocks, herds and schools: A distributed behavioral model[J]. Acm Siggraph Computer Graphics, 1987, 21(4): 25-34.
[25] Beni G, Wang J. Swarm intelligence in cellular robotic systems[C]. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26-30, 1989.
[26] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems[M]. Oxford: Oxford University Press, 1999.
[27] Millonas M. Swarm, phase transitions, and collective intelligence[M]//Computational Intelligence: A Dynamic System Perspective. New Jersey: Addison Wesley, 1993:137-151.
[28] Hauert S, Leven S, Varga M. Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, September 25-30, 2011.
[29] Cambone S. Unmanned Aircraft Systems Roadmap 2005—2030[R]. Office of the Secretary of Defense, 2005.
[30] Robert O. Small unmanned aircraft systems (SUAS) flight plan: 2016—2036[R]. United States Air Force, 2016.
[31] Vasarhelyi G, Viragh C, Somorjai G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, September 14-18, 2014.
[32] Virágh C, Vásárhelyi G, Tarcai N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration & Biomimetics, 2014, 9(2): 025012:1-025012:11.
[33] Yong E. Autonomous drones flock like birds[EB/OL]. (2016-04-05)[2016-11-25]. http://www.nature.com/news/autonomous-drones-flock-like-birds-1.14776.
[34] Chung T H, Clement M R, Day M A, et al. Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs[C]. IEEE International Conference on Robotics and Automation. Stockholm, Sweden, May 16-21, 2016.
[35] Day M A, Clement M R, Russo J D, et al. Multi-UAV software systems and simulation architecture[C]. International Conference on Unmanned Aircraft Systems, Denver, Colorado, USA, June 9-12, 2015.
[36] Daniel P. Gremlins[EB/OL]. (2014-06-09)[2016-11-25]. http://www.darpa.mil/program/gremlins.
[37] Ledé J C. Collaborative operations in denied environment (CODE)[EB/OL]. (2015-01-21)[2016-11-25]. http://www.darpa.mil/program/collaborative-operations-in-denied-environment.
[38] DARPA Public Affairs. Operating in contested environments[EB/OL]. (2015-03-30)[2016-11-25]. http://www.darpa.mil/news-events/2015-03-30.
[39] Office of Naval Research. LOCUST: Autonomous, swarming UAVs fly into the future[EB/OL]. (2015-04-14) [2016-11-25]. http://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR.aspx.
[40] DARPA Public Affairs. OFFSET envisions swarm capabilities for small urban ground units[EB/OL]. (2016-12-07) [2016-11-25]. http://www.darpa.mil/ news-events/2016-12-07.
[41] 范彦铭. 无人机的自主与智能控制[J]. 中国科学(技术科学), 2017, 47(3): 221-229. Fan Yanming. Autonomous and intelligent control of the unmanned aerial vehicle[J]. Science Sinica Technologica, 2017, 47(3): 221-229.