[1] Zhao Y, Herzschuh U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau[J]. Vegetation History & Archaeobotany, 2008, 18(3):245-260.
[2] Ma Q, Zhu L, Lü X, et al. Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau[J]. Boreas. doi:10.1111/bor.12201.
[3] Zhu L, Lü X, Wang J, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports. doi:10.1038/srep13318.
[4] Herzschuh U, Birks H J B, Mischke S, et al. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains[J]. Journal of Biogeography, 2010, 37(4):752-766.
[5] Peng P, Zhu L, Frenzel P, et al. Water depth related ostracod distribution in Lake Pumoyum Co, southern Tibetan Plateau[J]. Quaternary International, 2013, 313-314(11):47-55.
[6] Guo Y, Zhu L, Frenzel P, et al. Holocene lake level fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracodinferred water depth reconstruction[J]. Holocene, 2016, 26(1):29-43.
[7] Mischke S, Herzschuh U, Massmann G, et al. An ostracod-conductivity transfer function for Tibetan lakes[J]. Journal of Paleolimnology, 2007, 38(4):509-524.
[8] Zhu L, Ping P, Xie M, et al. Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau[J]. Hydrobiologia, 2010, 648(1):157-174.
[9] 胡星, 朱立平, 汪勇, 等. 青藏高原西南部湖泊沉积正构烷烃及其单体δD的气候意义[J]. 科学通报, 2014, 59(19):1892-1903. Hu X, Zhu L P, Wang Y, et al. Climatic significance of n-alkanes and their compound-specific δD values from lake surface sediments on the Southwestern Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(19):1892-1903.
[10] Wu X, Dong H, Zhang C L, et al. Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2013, 61(6):45-56.
[11] Wang H, Dong H, Zhang C L, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research, 2015, 83(1):116-126.
[12] 王明达, 梁洁, 侯居峙, 等. 青藏高原湖泊表层沉积物GDGTs分布特征及其影响因素[J]. 中国科学(地球科学), 2016, 46(2):167-183. Wang M D, Liang J, Hou J Z, et al. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors[J]. Science China(Earth Sciences), 2016, 46(2):167-183.
[13] 侯居峙, William J D A, 柳中晖. 湖泊碳库效应对青藏高原气候变化解释的影响探讨[J]. 第四纪研究, 2012, 32(3):441-453. Hou J Z, William J D A, Liu Z H. Geochronological limitations for interpreting the paleoclimatic history of the Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(3):441-453.
[14] Herzschuh U, Winter K, Wünnemann B, et al. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra[J]. Quaternary International, 2006, 154-155(5):113-121.
[15] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1:Chronology and stable isotopes of carbonates of a Holocene lacustrine core[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 120(1):25-47.
[16] Haberzettl T, Henkel K, Kasper T, et al. Independently dated paleomagnetic secular variation records from the Tibetan Plateau[J]. Earth & Planetary Science Letters, 2015, 416:98-108.
[17] Watanabe T, Matsunaka T, Nakamura T, et al. Last glacial-Holocene geochronology of sediment cores from a high-altitude Tibetan lake based on AMS 14C dating of plant fossils:Implications for paleoenvironmental reconstructions[J]. Chemical Geology, 2010, 277(1/2):21-29.
[18] Wünnemann B, Wagner J, Zhang Y, et al. Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate[J]. Journal of Paleolimnology, 2012, 48(4):725-749.
[19] Mischke S, Zhang C, Börner A, et al. Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake[J]. Journal of Quaternary Science, 2009, 25:162-177.
[20] Qiang M R, Song L, Chen F H, et al. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau (China)[J]. Journal of Paleolimnology, 2013, 49(4):575-590.
[21] Jin Z, An Z, Yu J, et al. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial[J]. Quaternary Science Reviews, 2015, 122:63-73.
[22] Opitz S, Wünnemann B, Aichner B, et al. Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 337-338(4):159-176.
[23] Zhang C, Mischke S. A Late Glacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2009, 28(19):1970-1983.
[24] Opitz S, Zhang C, Herzschuh U, et al. Climate variability on the southeastern Tibetan Plateau since the Late glacial based on a multiproxy approach from Lake Naleng-comparing pollen and non-pollen signals[J]. Quaternary Science Reviews, 2015, 115:112-122.
[25] Ahlborn M, Haberzettl T, Wang J, et al. Synchronous pattern of moisture availability on the southern Tibetan Plateau since 17.5 calka BPthe Tangra Yumco lake sediment record[J]. Boreas. doi:10.1111/bor.12204.
[26] Herzschuh U, Kramer A, Mischke S, et al. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra[J]. Quaternary Research, 2009, 71(2):162-171.
[27] Nishimura M, Matsunaka T, Morita Y, et al. Paleoclimatic changes on the southern Tibetan Plateau over the past 19,000 years recorded in Lake Pumoyum Co, and their implications for the southwest monsoon evolution[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 396(3):75-92.
[28] Demske D, Tarasov P, Wunnemann B, et al. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 279(3):172-185.
[29] 唐领余, 沈才明, 廖淦标, 等. 末次盛冰期以来西藏东南部的气候变化——西藏东南部的花粉记录[J]. 中国科学(地球科学), 2004, 34(5):436-442. Tang L Y, Shen C M, Liao K B, et al. Climatic changes in the southeastern Qinghai-Tibetan Plateau since the Last Glacial Maximum-pollen records from southeastern Tibet[J]. Science China Series(Earth Science), 2004, 34(5):436-442.
[30] 朱立平, 王君波, 陈玲, 等. 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004, 59(4):514-524. Zhu L P, Wang J B, Chen L, et al. 20,000-year Environmental change reflected by multidisciplinary lake sediments in Chen Co, southern Tibet[J]. Acta Geographica Sinica, 2004, 59(4):514-524.
[31] Bird B W, Polisar P J, Lei Y, et al. A Tibetan lake sediment record of Holocene Indian summer monsoon variability[J]. Earth and Planetary Science Letters, 2014, 399(3):92-102.
[32] Wu Y, Lücke A, Jin Z, et al. Holocene climate development on the central Tibetan Plateau:A sedimentary record from Cuoe Lake[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 234(2/4):328-340.
[33] Leipe C, Demske D, Tarasov P E. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri:Implications for palaeoclimatic and archaeological research[J]. Quaternary International, 2014, 348:93-112.
[34] Cheng B, Chen F, Zhang J. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(1):136-146.
[35] Mischke S, Kramer M, Zhang C, et al. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 267(2):59-76.