Articles

Progress of the role of bile acids and FXR in cell proliferation and differentiation

  • YANG Mei ,
  • ZHANG Fuchun ,
  • ZHANG Wenbao
Expand
  • 1. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
    2. Basic Medical College, Xinjiang Medical University, Urumqi 830011, China;
    3. State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

Received date: 2016-08-15

  Revised date: 2016-12-06

  Online published: 2017-02-28

Abstract

The bile acids have many important physiological functions and are shown to play key roles in the digestion and absorption of dietary lipids and fat soluble vitamins as well as in regulating the bile acid homeostasis, the lipids, the glucose and the energy metabolism. Recent evidences suggest that the bile acids and their nuclear receptor FXR play an important role in the cell proliferation, the differentiation, the apoptosis and the normal liver regeneration. This review elucidates the potential role of the bile acid-FXR signaling pathway in the cell proliferation, the differentiation and the liver regeneration, as well as highlights possible mechanisms involved. With the development of the bile acid-FXR signaling pathway in the cell proliferation, the differentiation and the liver regeneration, the related fundamental scientific research will be turned into practical applications in the clinical and preventive medicine.

Cite this article

YANG Mei , ZHANG Fuchun , ZHANG Wenbao . Progress of the role of bile acids and FXR in cell proliferation and differentiation[J]. Science & Technology Review, 2017 , 35(4) : 79 -83 . DOI: 10.3981/j.issn.1000-7857.2017.04.014

References

[1] Parks D J, Blanchard S G, Bledsoe R K, et al. Bile acids:Natural li-gands for an orphan nuclear receptor[J]. Science, 1999, 284(5418):1365-1368.
[2] Wang H B, Chen J, Hollister K, et al. Endogenous bile acids are li-gands for the nuclear receptor FXR/BAR[J]. Molecular Cell, 1999, 3(5):543-553.
[3] Keating N, Keely S J. Bile acids in regulation of intestinal physiology[J]. Current Gastroenterology Reports, 2009, 11(5):375-382.
[4] Wang Y D, Chen W D, Moore D D, et al. FXR:A metabolic regulator and cell protector[J]. Cell Research, 2008, 18(11):1087-1095.
[5] Li G, Thomas A M, Hart S N, et al. Farnesoid X receptor activation me-diates head-to-tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner[J]. Molecular Endocrinology, 2010, 24(7):1404-1412.
[6] Liu J, Lu H, Lu Y, et al. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures[J]. Toxicol Science, 2014, 141(2):538-546.
[7] Yang F, Huang X, Yi T, et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor[J]. Cancer Research, 2007, 67(3):863-867.
[8] Kim I, Morimura K, Shah Y, et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice[J]. Carcinogenesis, 2007, 28(5):940-946.
[9] Li G, Kong B, Zhu Y, et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X recep-tor knockout mice[J]. Toxicology and Applied Pharmacology, 2013, 272(2):299-305.
[10] Li G, Zhu Y, Tawfik O, et al. Mechanisms of STAT3 activation in the liver of FXR knockout mice[J]. American Journal of Physiology:Gastro-intestinal and Liver Physiology, 2013, 305(11):G829-G837.
[11] Xu Z, Huang G, Gong W, et al. FXR ligands protect against hepatocel-lular inflammation via SOCS3 induction[J]. Cellular Signalling, 2012, 24(8):1658-1664.
[12] Deuschle U, Schüler J, Schulz A, et al. FXR controls the tumor sup-pressor NDRG2 and FXR agonists reduce liver tumor growth and me-tastasis in an orthotopic mouse xenograft model[J]. PLoS One, 2012, 7(10):e43044.
[13] Liu N, Meng Z, Lou G, et al. Hepatocarcinogenesis in FXR-/-mice mimics human HCC progression that operates through HNF1α regula-tion of FXR expression[J]. Molecular Endocrinology, 2012, 26(5):775-785.
[14] Ohno T, Shirakami Y, Shimizu M, et al. Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand[J]. Cancer Letters, 2012, 323(2):215-222.
[15] Su H, Ma C, Liu J, et al. Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma[J]. American Journal of Physiolo-gy:Gastrointestinal and Liver Physiology, 2012, 303(11):G1245-G1253.
[16] Vaquero J, Briz O, Herraez E, et al. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemore-sistance against genotoxic compounds[J]. Biochimica et Biophysica Ac-ta:Molecular Cell Research, 2013, 1833(10):2212-2219.
[17] Herraez E, Gonzalez-Sanchez E, Vaquero J, et al. Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins[J]. Molecular Phar-maceutics, 2012, 9(9):2565-2576.
[18] Degirolamo C, Modica S, Vacca M, et al. Prevention of spontaneous hepatocarcinogenesis in FXR null mice by intestinal specific FXR reactivation[J]. Hepatology, 2015, 61(1):161-170.
[19] Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19[J]. Cancer Re-search, 2014, 74(12):3306-3316.
[20] Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases[J]. Science Translational Medicine, 2014, 6(247):247ra100.
[21] Huang W D, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration[J]. Science, 2006, 312(5771):233-236.
[22] Meng Z, Wang Y, Wang L, et al. FXR regulates liver repair after CCl4-induced toxic injury[J]. Molecular Endocrinology, 2010, 24(5):886-897.
[23] Chen W, Wang Y, Zhang L, et al. Farnesoid X receptor alleviates agerelated proliferation defects in regenerating mouse livers by activating Forkhead box M1b transcription[J]. Hepatology, 2010, 51(3):953-962.
[24] Wang Y D, Chen W D, Wang M, et al. Farnesoid X receptor antago-nizes nuclear factor kappaB in hepatic inflammatory response[J]. Hep-atology, 2008, 48(5):1632-1643.
[25] 梁科伟, 袁晟光. 胆汁酸与肝再生[J]. 世界华人消化杂志, 2011, 19(22):2340-2345. Liang Kewei, Yuan Shengguang. Bile acids and liver regeneration[J]. World Chinese Journal of Digestology, 2011, 19(22):2340-2345.
[26] Tang S Y, Jiao Y, Li L Q. Significance of Forkhead Box m1b (Foxm1b) gene in cell proliferation and carcinogenesis[J]. Chinese Journal Of Cancer, 2008, 27(8):894-896.
[27] Brezillon N, Lambert-Blot M, Morosan S, et al. Transplanted hepato-cytes over-expressing FoxM1B efficiently repopulate chronically in-jured mouse liver independent of donor age[J]. Molecular Therapy, 2007, 15(9):1710-1715.
[28] Krupczak-Hollis K, Wang X, Dennewitz MB, et al. Growth hormone stimulates proliferation of old-aged regenerating liver through fork-head box m1b[J]. Hepatology, 2003, 38(6):1552-1562.
[29] Garcı‘a-Rodrı’guez J L, Barbier-Torres L, Ferna‘ndez-A’lvarez S, et al. SIRT1 controls liver regeneration by regulating bile acid metabo-lism through farnesoid X receptor and mammalian target of rapamycin signaling[J]. Hepatology, 2014, 59(5):1972-1983.
[30] Zhang L, Wang Y, Chen W, et al. Promotion of liver regeneration/re-pair by farnesoid X receptor in both liver and intestine in mice[J]. Hepatology, 2012, 56(6):2336-2343.
[31] Claus Kordes, Iris Sawitza, Silke Götze, et al. Bile acids and stellate cells[J]. Digestive Diseases, 2015, 33(3):332-337.
[32] Sawitza I, Kordes C, Götze S, et al. Bile acids induce hepatic differen-tiation of mesenchymal stem cells[J]. Scientific Reports, 2015, 5:13320.
[33] Smyth J D. In vitro cultivation of parasitic helminths[M]. Boca Raton:CRC Press, 1990, 77-154.
[34] Smyth J D. Echinococcus granulosus and E. multilocularis:In vitro cul-ture of the strobilar stages from protoscoleces[J]. Angew Parasitol, 1979, 20(3):137-184.
[35] Mohammadzadeh T, Sadjjadi S M, Rahimi H R, et al. Establishment of a modified in vitro cultivation of protoscoleces to adult echinococ-cus granulosus; an important way for new investigations on hydatidosis[J]. Iranian Journal of Parasitology, 2012, 7(1):59-66.
[36] Hirohashi T, Suzuki H, Takikawa H, et al. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3(Mrp3)[J]. Journal of Biological Chemistry, 2000, 275(4):2905-2910.
[37] Zheng H, Zhang W, Zhang L, et all. The genome of the hydatid tape-worm Echinococcus granulosus[J]. Nature Genetics, 2013, 45(10):1168-1175.
[38] Hernández-Bello R, Ramirez-Nieto R, Muñiz-Hernández S, et al. Sex steroids effects on the molting process of the helminth human parasite Trichinella spiralis[J]. Journal of Biomedicine and Biotechnology, 2011, 2011:1-10.
[39] Tzertzinis G, Egana A L, Palli S R, et al. Molecular evidence for a functional ecdysone signaling system in Brugia malayi[J]. PLoS Ne-glected Tropical Diseases, 2010, 4(3):e625.
[40] 杨梅, 梁小弟, 李军, 等. 细粒棘球绦虫新疆株胆汁酸钠协同转运蛋白基因的克隆及序列分析[J]. 科技导报, 2016, 34(2):215-220. Yang Mei, Liang Xiaodi, Li Jun, et al. Molecular cloning and se-quence analysis of sodium-bile acid cotransporter from Echinococcus granulosus in Xinjiang[J]. Science & Technology Review, 2016, 34(2):215-220.
Outlines

/