[1] Parks D J, Blanchard S G, Bledsoe R K, et al. Bile acids:Natural li-gands for an orphan nuclear receptor[J]. Science, 1999, 284(5418):1365-1368.
[2] Wang H B, Chen J, Hollister K, et al. Endogenous bile acids are li-gands for the nuclear receptor FXR/BAR[J]. Molecular Cell, 1999, 3(5):543-553.
[3] Keating N, Keely S J. Bile acids in regulation of intestinal physiology[J]. Current Gastroenterology Reports, 2009, 11(5):375-382.
[4] Wang Y D, Chen W D, Moore D D, et al. FXR:A metabolic regulator and cell protector[J]. Cell Research, 2008, 18(11):1087-1095.
[5] Li G, Thomas A M, Hart S N, et al. Farnesoid X receptor activation me-diates head-to-tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner[J]. Molecular Endocrinology, 2010, 24(7):1404-1412.
[6] Liu J, Lu H, Lu Y, et al. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures[J]. Toxicol Science, 2014, 141(2):538-546.
[7] Yang F, Huang X, Yi T, et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor[J]. Cancer Research, 2007, 67(3):863-867.
[8] Kim I, Morimura K, Shah Y, et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice[J]. Carcinogenesis, 2007, 28(5):940-946.
[9] Li G, Kong B, Zhu Y, et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X recep-tor knockout mice[J]. Toxicology and Applied Pharmacology, 2013, 272(2):299-305.
[10] Li G, Zhu Y, Tawfik O, et al. Mechanisms of STAT3 activation in the liver of FXR knockout mice[J]. American Journal of Physiology:Gastro-intestinal and Liver Physiology, 2013, 305(11):G829-G837.
[11] Xu Z, Huang G, Gong W, et al. FXR ligands protect against hepatocel-lular inflammation via SOCS3 induction[J]. Cellular Signalling, 2012, 24(8):1658-1664.
[12] Deuschle U, Schüler J, Schulz A, et al. FXR controls the tumor sup-pressor NDRG2 and FXR agonists reduce liver tumor growth and me-tastasis in an orthotopic mouse xenograft model[J]. PLoS One, 2012, 7(10):e43044.
[13] Liu N, Meng Z, Lou G, et al. Hepatocarcinogenesis in FXR-/-mice mimics human HCC progression that operates through HNF1α regula-tion of FXR expression[J]. Molecular Endocrinology, 2012, 26(5):775-785.
[14] Ohno T, Shirakami Y, Shimizu M, et al. Synergistic growth inhibition of human hepatocellular carcinoma cells by acyclic retinoid and GW4064, a farnesoid X receptor ligand[J]. Cancer Letters, 2012, 323(2):215-222.
[15] Su H, Ma C, Liu J, et al. Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma[J]. American Journal of Physiolo-gy:Gastrointestinal and Liver Physiology, 2012, 303(11):G1245-G1253.
[16] Vaquero J, Briz O, Herraez E, et al. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemore-sistance against genotoxic compounds[J]. Biochimica et Biophysica Ac-ta:Molecular Cell Research, 2013, 1833(10):2212-2219.
[17] Herraez E, Gonzalez-Sanchez E, Vaquero J, et al. Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins[J]. Molecular Phar-maceutics, 2012, 9(9):2565-2576.
[18] Degirolamo C, Modica S, Vacca M, et al. Prevention of spontaneous hepatocarcinogenesis in FXR null mice by intestinal specific FXR reactivation[J]. Hepatology, 2015, 61(1):161-170.
[19] Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19[J]. Cancer Re-search, 2014, 74(12):3306-3316.
[20] Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases[J]. Science Translational Medicine, 2014, 6(247):247ra100.
[21] Huang W D, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration[J]. Science, 2006, 312(5771):233-236.
[22] Meng Z, Wang Y, Wang L, et al. FXR regulates liver repair after CCl4-induced toxic injury[J]. Molecular Endocrinology, 2010, 24(5):886-897.
[23] Chen W, Wang Y, Zhang L, et al. Farnesoid X receptor alleviates agerelated proliferation defects in regenerating mouse livers by activating Forkhead box M1b transcription[J]. Hepatology, 2010, 51(3):953-962.
[24] Wang Y D, Chen W D, Wang M, et al. Farnesoid X receptor antago-nizes nuclear factor kappaB in hepatic inflammatory response[J]. Hep-atology, 2008, 48(5):1632-1643.
[25] 梁科伟, 袁晟光. 胆汁酸与肝再生[J]. 世界华人消化杂志, 2011, 19(22):2340-2345. Liang Kewei, Yuan Shengguang. Bile acids and liver regeneration[J]. World Chinese Journal of Digestology, 2011, 19(22):2340-2345.
[26] Tang S Y, Jiao Y, Li L Q. Significance of Forkhead Box m1b (Foxm1b) gene in cell proliferation and carcinogenesis[J]. Chinese Journal Of Cancer, 2008, 27(8):894-896.
[27] Brezillon N, Lambert-Blot M, Morosan S, et al. Transplanted hepato-cytes over-expressing FoxM1B efficiently repopulate chronically in-jured mouse liver independent of donor age[J]. Molecular Therapy, 2007, 15(9):1710-1715.
[28] Krupczak-Hollis K, Wang X, Dennewitz MB, et al. Growth hormone stimulates proliferation of old-aged regenerating liver through fork-head box m1b[J]. Hepatology, 2003, 38(6):1552-1562.
[29] Garcı‘a-Rodrı’guez J L, Barbier-Torres L, Ferna‘ndez-A’lvarez S, et al. SIRT1 controls liver regeneration by regulating bile acid metabo-lism through farnesoid X receptor and mammalian target of rapamycin signaling[J]. Hepatology, 2014, 59(5):1972-1983.
[30] Zhang L, Wang Y, Chen W, et al. Promotion of liver regeneration/re-pair by farnesoid X receptor in both liver and intestine in mice[J]. Hepatology, 2012, 56(6):2336-2343.
[31] Claus Kordes, Iris Sawitza, Silke Götze, et al. Bile acids and stellate cells[J]. Digestive Diseases, 2015, 33(3):332-337.
[32] Sawitza I, Kordes C, Götze S, et al. Bile acids induce hepatic differen-tiation of mesenchymal stem cells[J]. Scientific Reports, 2015, 5:13320.
[33] Smyth J D. In vitro cultivation of parasitic helminths[M]. Boca Raton:CRC Press, 1990, 77-154.
[34] Smyth J D. Echinococcus granulosus and E. multilocularis:In vitro cul-ture of the strobilar stages from protoscoleces[J]. Angew Parasitol, 1979, 20(3):137-184.
[35] Mohammadzadeh T, Sadjjadi S M, Rahimi H R, et al. Establishment of a modified in vitro cultivation of protoscoleces to adult echinococ-cus granulosus; an important way for new investigations on hydatidosis[J]. Iranian Journal of Parasitology, 2012, 7(1):59-66.
[36] Hirohashi T, Suzuki H, Takikawa H, et al. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3(Mrp3)[J]. Journal of Biological Chemistry, 2000, 275(4):2905-2910.
[37] Zheng H, Zhang W, Zhang L, et all. The genome of the hydatid tape-worm Echinococcus granulosus[J]. Nature Genetics, 2013, 45(10):1168-1175.
[38] Hernández-Bello R, Ramirez-Nieto R, Muñiz-Hernández S, et al. Sex steroids effects on the molting process of the helminth human parasite Trichinella spiralis[J]. Journal of Biomedicine and Biotechnology, 2011, 2011:1-10.
[39] Tzertzinis G, Egana A L, Palli S R, et al. Molecular evidence for a functional ecdysone signaling system in Brugia malayi[J]. PLoS Ne-glected Tropical Diseases, 2010, 4(3):e625.
[40] 杨梅, 梁小弟, 李军, 等. 细粒棘球绦虫新疆株胆汁酸钠协同转运蛋白基因的克隆及序列分析[J]. 科技导报, 2016, 34(2):215-220. Yang Mei, Liang Xiaodi, Li Jun, et al. Molecular cloning and se-quence analysis of sodium-bile acid cotransporter from Echinococcus granulosus in Xinjiang[J]. Science & Technology Review, 2016, 34(2):215-220.