Currently, compressed air energy storage (CAES) is a topic of general interest in the field of large-scale power storage technology research and development, because it has a broad application prospect in both grid-connection of new energy power generation and peak-load regulation of power grid. The research and development of air compressor is reviewed in this paper. Due to the fact that it is difficult for adiabatic process based equipment to improve working efficiency, screw air compressor has been proposed to reduce gas temperature by compression of mixed oil and gas, further lowering down the energy consumption. For the different evolution periods of CAES, including traditional gas-heating compression, non-gas-heating adiabatic compression and isothermal compression, different principles and variable efficiency are analyzed and compared. Realization methods and the latest development of isothermal CAES are introduced in detail. Finally, combined with the current situation, the future development direction of CAES technology is prospected.
FU Hao
,
ZHANG Yuying
,
CUI Yan
,
ZHANG Lulu
,
JIANG Tong
. Research progress of compressed air energy storage systems[J]. Science & Technology Review, 2016
, 34(23)
: 81
-87
.
DOI: 10.3981/j.issn.1000-7857.2016.23.008
[1] 陈海生. 压缩空气储能技术的特点与发展趋势[J]. 高科技与产业化, 2011(6):55-56.
[2] 荆平, 徐桂芝, 赵波, 等. 面向全球能源互联网的大容量储能技术[J]. 智能电网, 2015, 3(6):486-492.
[3] Chen H S, Cong T N, Yang W, et al. Progress in electrical energy storage system:A critical review[J]. Progress in Nature Science, 2009, 19(3):291-321.
[4] 程时杰, 李刚, 孙海顺, 等. 储能技术在电气工程领域中的应用与展望[J]. 电网与清洁能源, 2009, 25(2):1-8.
[5] 骆妮, 李建林. 储能技术在电力系统中的研究进展[J]. 电网与清洁能源, 2012, 28(2):71-79.
[6] GT系列:适用于气体和空气应用的整体齿轮型离心式压缩机, 排气压力最大为200巴, 驱动功率最大为40毫瓦[EB/OL].[2016-08-31]. http://www.atlascopco.com.cn/cnzh/products/空气和气体压缩机/1401256/1521439/.
[7] 韩杰, 谢元华, 李拜依, 等. 活塞式压缩机的研究进展[J]. 节能, 2014(12):17-23.
[8] 徐军. 15T2半无油活塞式空气压缩机设计和开发[D]. 南京:南京理工大学, 2010.
[9] 寿力双端变容螺杆式空气压缩机100-600HP[EB/OL].[2016-08-31]. http://www.sullair.com/asia/sites/sullair.com.asia/files/TS.pdf
[10] 蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29):5096-5102.
[11] 刘大易, 张宏鹏. 燃气轮机的发展前景及其发电技术[J]. 应用能源技术, 2008(1):5-8.
[12] 糜洪元. 国内外燃气轮机发电技术的发展现况与展望[J]. 电力设备, 2013, 7(10):8-10.
[13] 张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11):1991-1996.
[14] 高朋艳. 风力发电厂压缩空气蓄能的研究[D]. 北京:华北电力大学, 2011.
[15] 姜彤. 基于压缩空气储能的虚拟抽水蓄能电站及储能发电方法:CN103114564A[P]. 2013-05-22.
[16] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2):146-151.
[17] 张新敬. 压缩空气储能系统若干问题的研究[D]. 北京:中国科学院研究生院, 2011.
[18] 张磊. 压缩空气储能系统效率分析[D]. 北京:北京交通大学, 2013.
[19] 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1):164-171.
[20] 刘畅, 徐玉杰, 胡珊, 等. 压缩空气储能电站技术经济性分析[J]. 储能科学与技术, 2015, 4(2):158-168.
[21] Ekman C K, Jensen S H. Prospects for large scale electricity storage in Denmark[J]. Energy Conversion and Management, 2010, 51(6):1140-1147.
[22] Bi J, Jiang T, Chen W, et al. Research on storage capacity of compressed air pumped hydro energy storage equipment[J]. Energy & Power Engineering, 2013, 5(4):26-30.
[23] 王海霞. 大规模储能技术新突破[N]. 中国能源报, 2012-3-26.
[24] 薛皓白. 多级单阀膨胀机的理论与实验研究[D]. 北京:中国科学院工程热物理研究所, 2014.
[25] SustainX begins startup of world's first grid-scale isothermal compressed air energy storage system[EB/OL].[2016-08-31]. http://www.sustainx.com/e9c13ca1-134c-49e9-9031-036592clb37a/about-usnews-events-detail.htm
[26] Bollinger B R. System and method for rapid isothermal gas expansion andcompression for energy storage:US 7802426[P]. 2010-09-28.
[27] McBride T O, Bollinger B R. Increased power in compressed-gas energy storage and recovery:US8104274[P]. 2012-01-31
[28] General compression[EB/OL].[2016-08-31]. http://www.gclimited.co.nz/.
[29] Matthew Blieske. Systems and methods for optimizing thermal efficiency of a compressed air energy storage system:US,2013/8387375 B2[P]. 2013-03-5.
[30] Steve Muller. General compression moves ahead with unique energy storage technology[J]. Power Daily, 2010, 8(71):1.
[31] Marcus D. Fuel-free geologic compressed air energy storage from renewable power (Task #1)[R]//New Technology Implementation Grant Program. State of Texas, 2011-10-24.
[32] Marcus D. Fuel-free geologic compressed air energy storage from renewable power (Task #2-3)[R]//New Technology Implementation Grant Program. State of Texas, 2011-11-25.
[33] Lyman R J. Fuel-free geologic compressed air energy storage from renewable power (Task #4)[R]//New Technology Implementation Grant Program. State of Texas, 2013-11-18.
[34] Stahlkopf K E, Crane S E, Berlin Jr E P, et al. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange:US, 2011/0115223 A1[P]. 2011-05-19.
[35] 曹广亮, 陈曦. 液化空气储能技术的优势分析及发展现状[J]. 真空与低温, 2016, 22(1):11-15.
[36] 刘佳, 夏红德. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12):1993-1996.
[37] 徐玉杰, 陈海生, 刘佳, 等. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20):88-95.
[38] 薛小代, 陈晓弢, 梅生伟, 等. 采用熔融盐蓄热的非补热压缩空气储能发电系统性能[J]. 电工技术学报, 2016, 31(14):11-20.