Spescial Issues

Current research status and application prospect of SMES

  • GUO Wenyong ,
  • ZHANG Jingye ,
  • ZHANG Zhifeng ,
  • QIU Qingquan ,
  • ZHANG Guomin ,
  • LIN Liangzhen ,
  • XIAO Liye
Expand
  • Institute of Electrical Engineering, Chinese Academy of Sciences;Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2016-08-08

  Revised date: 2016-08-25

  Online published: 2016-12-28

Abstract

SMES stores the magnetic energy in the superconducting coil. It has the advantages of fast response, high conversion efficiency, fast power compensation, etc. Therefore, SMES is an ideal device for improving the quality and reliability of the electrical system. This paper presents an overview of the SMES technology, including its working principle, current research status, major advantages and disadvantages. The potential application prospects of SMES are also presented.

Cite this article

GUO Wenyong , ZHANG Jingye , ZHANG Zhifeng , QIU Qingquan , ZHANG Guomin , LIN Liangzhen , XIAO Liye . Current research status and application prospect of SMES[J]. Science & Technology Review, 2016 , 34(23) : 68 -80 . DOI: 10.3981/j.issn.1000-7857.2016.23.007

References

[1] 陈新耀. 电力系统储能问题初步探讨[J]. 电池工业, 2003, 8(4):161-162. Chen Xinyao. Discussion on battery used for energy storage system[J]. Battery Industry, 2003, 8(4):161-162.
[2] 程时杰, 文劲宇, 孙海顺. 储能技术及其在现代电力系统中的应用[J]. 电气应用, 2005, 24(4):1-8. Cheng Shijie, Wen Jingyu, Sun Haishun. Energy storage technology and its application to modern power system[J]. Electrical Applications, 2005, 24(4):1-8.
[3] 郑丽, 马维新, 李立春. 超导储能装置提高电力系统暂态稳定性的研究[J]. 清华大学学报(自然科学版), 2001, 41(3):73-76. Zheng Li, Ma Weixin, Li Lichun. Superconducting magnetic energy storage system for enhancing transient stability[J]. Journal of Tsinghua University:Science & Technology Edition, 2001, 41(3):73-76.
[4] 石晶, 唐跃进, 戴陶珍, 等. 电力安全与超导磁储能系统[J]. 低温物理学报, 2005, 27(S1):1051-1057. Shi Jing, Tang Yuejin, Dai Taozhen, et al. The safety of the power system and superconducting magnetic energy storage[J] Chinese Journal of Low Temperature Physics, 2005, 27(S1):1051-1057.
[5] Buckles W, Hassenzahl W V. Superconducting magnetic energy storage[J]. IEEE Power Engineering Review, 2000, 20(5):16-20.
[6] Boom R W, Peterson H A. Superconductive energy storage for power systems[J]. IEEE Transactions on Magnetics, 1972, 8(3):701-703.
[7] Boenig H J, Hauer J F. Commissioning tests of the bonneville power administration 30 MJ superconducting magnetic energy storage unit[J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(2):302-312.
[8] Luongo C A, Baldwin T, Ribeiro P, et al. A 100 MJ SMES demonstration at FSU-CAPS[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2):1800-1805.
[9] Ishigaki Y, Shirahama H, Kuroda K. Power control experiments using a 5 MJ superconducting magnetic energy storage system[C]//19th Annual IEEE Power Electronics Specialists Conference. Kyoto, Japan:IEEE, 1988:301-306.
[10] Nagaya S, Hirano N, Moriguchi H, et al. Field test results of the 5 MVA SMES system for bridging instantaneous voltage dips[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2):632-635.
[11] Honma H, Fujibayashi K, Asano K, et al. Development of a 1 MJ SMES with quench enthalpy protection[J]. IEEE Transactions on Energy Conversion, 1993, 83(3):442-447.
[12] Katagiri T, Nakabayashi H, Nijo Y, et, al. Field test result of 10 MVA/20 MJ SMES for load fluctuation compensation[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3):1993-1998.
[13] Kozak J, Majka M, Kozak S, et al. Performance of SMES system with HTS magnet[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3):1348-1351.
[14] Kim H J, Seong K C, Cho J W, et al. 3 MJ/750 kVA SMES system for improving power quality[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2):574-577.
[15] Tixador P, Bellin B, Deleglise M, et al. Design and first tests of a 800 kJ HTS SMES[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2):1967-1972.
[16] Zhao C, Wang Z, Zhang D, et al. Development and test of a superconducting fault current limiter-magnetic energy storage (SFCLMES) system[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2):2014-2017.
[17] Xiao Liye, Dai Shaotao, Lin Liangzhen, et al. Development of the world's first HTS power substation[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):5000104-5000104.
[18] Dai Shaotao, Xiao Liye, Wang Zikai, et al. Development and demonstration of a 1 MJ High-Tc SMES[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):5700304-5700304.
[19] Jiang X, Zhu X, Cheng Z, et al. A 150 kVA/0.3 MJ SMES voltage sag compensation system[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):1903-1906.
[20] Ren L, Xu Y, Zuo W, et al. Development of a Movable HTS SMES System[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(4):1-9.
[21] Seeber B. Handbook of applied superconductivity[M]. Boca Raton:CRC Press, 1998.
[22] Kalsi S S, Aized D, Connor B, et al. HTS SMES magnet design and test results[J]. IEEE Transactions on Applied Superconductivity, 1997(7):971-976.
[23] Nagaya S, Hirano N, Shikimachi K, et al. Development of MJ-Class HTS SMES for bridging instantaneous voltage dips[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2):770-773.
[24] Xiao Liye, Wang Zikai, Dai Shaotao, et al. Fabrication and tests of a 1 MJ HTS magnet for SMES[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2):770-773.
[25] Wang J, Skiles J, Kustom R, et al. Studies of power conditioning circuits for superconductive magnetic energy store[C]//19th Annual IEEE Power Electronics Specialists Conference. Kyoto, Japan:IEEE, 1988:307-312.
[26] Dong H. A power conditioning system for superconductive magnetic energy storage based on multi-level voltage source converter[D]. Virginia:College of Engineering, Virginia Polytechnic Institute and State University, 1999.
[27] Hassan I D, Bucci R M, Swe K T. 400 MW SMES power conditioning system development and simulation[J]. IEEE Transactions on Power Electronics, 1993, 8(3):237-249.
[28] Guo Wenyong, Xiao Liye, Dai Shaotao, et al. Control and test of a 0.5 MVA/1 MJ SMES[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):5700804.
[29] 郭文勇, 赵彩宏, 张志丰, 等. 用于超导储能系统的多电平电流调节器[J]. 电力系统自动化, 2007, 31(18):66-67. Guo Wenyong, Zhao Caihong, Zhang Zhifeng, et al. A Multilevel Current regulator for superconducting magnetic energy storage system[J]. Automation of Electric Power System, 2007, 31(18):66-67.
[30] 李顺, 赵彩宏, 肖立业. 用于超导储能系统的电流调节器试验研究[J]. 电力系统自动化, 2005, 25(16):76-78. Li Shun, Zhao Caihong, Xiao Liye. Experimental research of current regulator for superconducting magnetic energy storage[J]. Automation of Electric Power System, 2005, 26(16):76-78, 96.
[31] 郭文勇, 赵彩宏, 肖立业, 等. 超导储能用电流调节器充放电数学模型及其控制系统[J]. 电工技术学报, 2007, 22(10):117-122. Guo Wenyong, Zhao Caihong, Xiao Liye, et al. Charging and discharging math model and control system of current regulator for superconducting magnetic energy storage[J]. Transactions of China Electrotechnical Society, 2007, 22(10):117-122.
[32] 郭文勇, 赵彩宏, 张志丰, 等. 电压型超导储能系统统一非线性控制策略[J]. 电力系统自动化, 2007, 31(19):54-58. Guo Wenyong, Zhao Caihong, Zhang Zhifeng, et al. A unified nonlinear control strategy for the voltage type superconducting magnetic energy storage system[J]. Automation of Electric Power System, 2007, 31(19):54-58.
[33] 郭文勇, 赵彩宏, 张志丰, 等. 电压型超导储能系统统一直接功率控制[J]. 电网技术, 2007, 31(9):58-63. Guo Wenyong, Zhao Caihong, Zhang Zhifeng, et al. A unified direct power control method for voltage type superconducting magnetic energy storage system[J]. Power System Technology, 2007, 31(9):58-63.
[34] 郭文勇, 赵彩宏, 张志丰, 等. 级联型超导储能系统整体协调控制方法[J]. 电网技术, 2007, 31(16):55-59. Guo Wenyong, Zhao Caihong, Zhang Zhifeng, et al. A system control strategy for cascaded superconducting energy storage system[J]. Power System Technology, 2007, 31(16):55-59.
[35] 郭文勇, 张志丰, 肖立业, 等. 基于共直流电压母线级联型超导储能系统的动态电压恢复器最小能量控制[J]. 电网技术, 2009, 33(5):69-74. Guo Wenyong, Zhang Zhifeng, Xiao Liye, et al. Minimum energy control for dynamic voltage restorer based on common DC voltage link cascaded superconducting magnetic energy storage system[J]. Power System Technology, 2009, 33(5):69-74.
[36] Kustom L, Skiles J, Wang J, et al. Digital control of power conditioning converters for superconductive magnetic energy storage[C]//IEEE International Conference on Systems Engineering. Fairborn, Ohio, USA:IEEE, 1989:293-296.
[37] Ise T, Skiles J J, Kustom R L, et al. Circuit configuration of the GTO converter for superconducting magnetic energy storage[C]//19th Annual IEEE Power Electronics Specialists Conference. Kyoto, Japan:IEEE, 1988:108-115.
[38] Sakai T, Kawaguchi A, Yonemoto T, et al. SMES system with snubber loss free type current source converter[C]//23rd International conference on Industrial Electronics. Guimarães, Portugal:IEEE, 1997:443-446.
[39] Zhang Z, Ooi B T. Multi-modular current-source SPWM converters for superconducting magnetic energy storage system[C]//23rd Annual IEEE Power Electronics Specialists Conference. Toledo, Spain:IEEE, 1992:561-568.
[40] 徐德鸿, 正田英介. 超导储能装置用GTO PWM电流型变流器模块方阵[J]. 中国电机工程学报, 1998, 18(2):124-130. Xu Dehong, Masada Erikosuke. GTO PWM Current Converter Array for Superconducting Magnetic Energy Storage[J]. Chinese Journal of Electrical Engineering, 1998, 18(2):124-130.
[41] Ali M H, Wu B, Dougal R A. An overview of SMES applications in power and energy systems[J]. IEEE Transactions on Sustainable Energy, 2010, 1(1):38-47.
[42] Iglesias I J, Bautista A, Visiers M. Experimental and simulated results of a SMES fed by a current source inverter[J]. IEEE Transactions on Applied Superconductivity, 1997, 7(2):861-864.
[43] Han B M, Karady G G. A new power-conditioning system for superconducting magnetic energy storage[J]. IEEE Transactions on Energy Conversion, 1993, 8(2):214-220.
[44] Lasseter R H, Jalali S G. Dynamic response of power conditioning systems for superconductive magnetic energy storage[J]. IEEE Transactions on Energy Conversion, 1991, 6(3):388-393.
[45] Haberberger M, Fuchs F W. Novel protection strategy for current interruptions in IGBT current source inverters[C]//35th Power Electronics Specialists Conference. Aachen, Germany:IEEE, 2004:558-564.
[46] 施啸寒, 王少荣. 蓄电池-超导磁体储能系统平抑间歇性电源出力波动的研究[J]. 电力自动化设备, 2013, 33(8):53-58. Shi Xiaohan, Wang Shaorong. Power output fluctuation suppression by hybrid energy storage system for intermittent source[J]. Electric Power Automation Equipment, 2013, 33(8):53-58.
[47] 唐西胜, 武鑫, 齐智平. 超级电容器蓄电池混合储能独立光伏系统研究[J]. 太阳能学报, 2007, 28(2):178-183. Tang Xisheng, Wu Xin, Qi Zhiping. Study on stand-alone PV system with battery/ultracapacitor hybrid energy storage[J]. Journal of Solar Energy, 2007, 28(2):178-183.
[48] Akiyama K, Nozaki Y, Kudo M, et al. Ni-MH batteries and EDLCs hybrid stand-alone photovoltaic power system for digital access equipment[C]//22nd Telecommunications Energy Conference. Dresden, Germany:IEEE 2000:387-393.
[49] Nozaki Y, Akiyama K, Kawaguchi H, et al. Evaluation of an EDLCbattery hybrid stand-alone photovoltaic power system[C]//Photovoltaic Specialists Conference. Anchorage, Alaska:IEEE, 2000:1634-1637.
[50] 张国驹, 唐西胜, 齐智平. 超级电容器与蓄电池混合储能系统在微网中的应用[J]. 电力系统自动化, 2010, 34(12):85-89. Zhang Guoju, Tang Xisheng, Qi Zhiping. Application of hybrid energy storage system of super-capacitors and batteries in a microgrid[J]. Automation of Electric Power System, 2010, 34(12):85-89.
[51] Wei Li, Joos G. Comparison of energy storage system technologies and configurations in a wind farm[C]//Power Electronics Specialists Conference. Jeju, Korea:IEEE, 2007:1280-1285.
[52] Nojima I, Takano I, Sawada Y. Transient performance of a new-type hybrid electric power distributed system with fuel cell and SMES[C]//Industrial Electronics Society, Denver, Colorado, USA:IEEE, 2001:1303-1308.
[53] 张晓红, 马列, 李美林. 新型混合储能技术在微电网中的应用研究[J]. 通信电源技术, 2015, 32(6):14-15. Zhang Xiaohong, Ma Lie, Li Meilin. Research on the application of new hybrid energy storage technology in micro grid[J]. Telecom Power Technologies, 2015, 32(6):14-15.
[54] 杨芳华, 刘娇, 陈浩, 等. 超导-蓄电池混合储能装置接于配电网对电压稳定性的影响[J]. 电力学报, 2014(3):211-214. Yang Fanghua, Liu Jiao, Chen Hao, et al. Influence of superconducting magnetic-battery energy storage hybrid energy storage connected to distribution on voltage stability[J]. Electric Power Journal, 2014(3):211-214.
[55] 邓汇娟, 张铁山, 周小光, 等. 超导储能蓄电池混合储能在风力发电中的应用[J]. 电源学报, 2013(1):25-29. Deng Huijuan, Zhang Tieshang, Zhou Xiaoguang, et al. Application of hybrid energy storage system with superconducting magnetic energy storage battery in wind power generation[J]. Journal of Power, 2013(1):25-29.
[56] 杨堤, 程浩忠, 马紫峰, 等. 基于储能技术提高风电机组低电压穿越能力的分析和展望[J]. 电力自动化设备, 2015, 35(12):1-10. Yang Di, Cheng Haozhong, Ma Zifeng, et al. Analysis and prospect of LVRT improvement based on energy storage technology for wind turbine generator system[J]. Electric Power Automation Equipment, 2015(12):1-10.
[57] Li J, Zhang M, Yang Q, et al. SMES/battery hybrid energy storage system for electric buses[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4):1-5.
[58] Suzuki S, Baba J, Shutoh K, et al. Effective application of superconducting magnetic energy storage(SMES) to load leveling for high speed transportation system[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(628):713-716.
[59] Ngamroo I, Taeratanachai C, Dechanupaprittha S, et al. Enhancement of load frequency stabilization effect of superconducting magnetic energy storage by static synchronous series compensator based on H∞ control[J]. Energy Conversion and Management, 2007, 48(4):1302-1312.
[60] Torre W V, Eckroad S. Improving power delivery through the application of superconducting magnetic energy storage(SMES)[C]//Power Engineering Society Winter Meeting. Columbus, Ohio USA:IEEE, 2001:81-87.
[61] Buckles W E, Daugherty M A, Weber B R, et al. The SSD:A commercial application of magnetic energy storage[J]. IEEE Transactions on Applied Superconductivity, 1993, 3(1):328-331.
[62] Hsu C S, Lee W J. Superconducting magnetic energy storage for power systems application[J]. IEEE Transactions on Industrial Application, 1993, 29(5):990-996.
[63] Yunus A M S, Abu-Siada A, Masoum M A S. Application of SMES unit to improve the high-voltage-ride-through capability of DFIGgrid connected during voltage swell[C]//Innovative Smart Grid Technologies Asia. Kollam, Kerala, India:IEEE, 2011:1-6.
[64] Reza A P M, Ali M H, Abbas S. Voltage stabilization of VSI SMES capacitors and voltage sag compensation by SMES using novel switching strategies[J]. Energy, 2010, 35(8):3131-3142.
[65] 郭文勇, 肖立业, 戴少涛. 集成SMES和CS-SGSC的双馈型风力发电系统[J]. 电力系统自动化, 2012, 36(14):101-107. Guo Wenyong, Xiao Liye, Dai Shaotao. Doubly Fed Induction Generation system incorporated with SMES and CS-SGSC[J]. Automation of Electric Power System, 2012, 36(14):101-107.
[66] Sheikh M R I, Mondol N, Eva F. Stabilization of wind generator by PWM-VSC controlled SMES[C]//International Conference on Developments in Renewable Energy Technology. Dhaka, Bangladesh:IEEE, 2012:1-5.
[67] 柳伟, 顾伟, 孙蓉, 等. DFIG-SMES互补系统一次调频控制[J]. 电工技术学报, 2012(9):108-116. Liu Wei, Gu Wei, Sun Rong, et al. Primary frequency control of doubly fed induction generator-superconducting magnetic energy storage complementary system[J]. Transactions of China Electrotechnical Society, 2012(9):108-116.
[68] Wasynczuk O. Damping subsynchronous resonance using energy storage[J]. IEEE Power Engineering Review, 1982, PAS-101(4):905-914.
[69] Wu Chijui, Lu Chunfeng. Damping torsional oscillations by a superconducting magnetic energy storage unit[J]. Electric Machines and Power Systems, 1994, 22(1):1-15.
[70] Torre W V, Eckroad S. Improving power delivery through the application of superconducting magnetic energy storage (SMES)[C]//2001 Power Engineering Society Winter Meeting. Columbus, Ohio USA:IEEE, 2001:81-87.
[71] Baumann P D. Energy conservation and environmental benefits that may be realized from superconducting magnetic energy storage[J]. IEEE Transactions on Energy Conversion, 1992, 7(2):253-259.
[72] Guo Wenyong, Xiao Liye, Dai Shaotao, et, al, Control strategy of a 0.5 MVA/1 MJ SMES based dynamic voltage restorer[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3):1329-1333.
[73] Guo Wenyong, Xiao Liye, Dai Shaotao. Control and design of a current source UPQC with fault current limiting ability[J]. IET Power Electronics, 2013, 6(2):297-308.
[74] Guo Wenyong, Xiao Liye, Dai Shaotao. Enhancing low-voltage ridethrough capability and smoothing output power of DFIG with a superconducting fault-current limiter-magnetic energy storage system[J]. IEEE Transactions on Energy Conversion, 2012, 27(2):277-295.
[75] 郭文勇, 戴少涛, 王海风, 等. 向风电场的超导限流-储能系统[J]. 电力系统自动化, 2015, 39(14):37-45. Guo Wenyong, Dai Shaotao, Wang Haifeng, et, al. A superconducting fault current limiter-magnetic energy storage system for wind farm[J]. Automation of Electric Power System, 2015, 39(14):37-45.
[76] 郭文勇. 超导限流-储能系统风电场应用分析[J], 储能科学与技术, 2015, 4(2):176-182. Guo Wenyong. Application analysis of a superconducting fault current limiter-magnetic energy storage system for the wind farm[J]. Energy Storage Science and Technology, 2015, 4(2):176-182.
[77] Guo Wenyong, Zhang Jingye, Song Naihao, et al. Overview and development progress of a 1 MVA/1 MJ superconducting fault current limiter-magnetic energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3):5200905.
[78] Noguchi S, Yamashita H, Ishiyama A. An optimization method for design of SMES coils using YBCO tape[J]. IEEE Transactions on Applied Superconductivity, 2013, 13(2):1856-1859.
[79] Sun Q, Zhang Z F, Lin L Z, et al. Design method of SMES magnet considering inhomogeneous superconducting properties of YBCO tapes[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3):1-5.
[80] Moghadasi A H, Heydari H, Farhadi M. Pareto optimality for the design of SMES solenoid coils verified by magnetic field analysis[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(1):13-20.
[81] Hayashi H, Tsutsumi K, Funaki F, et al. Design study of 1 GJ class HTS-SMES(1):Conceptual design of a magnet system[J]. Phisica C, 2001, 357-360:1327-1331.
[82] Choi J H, Cheon H G, Choi J W, et al. A study on basic insulation characteristics of 2.5 MJ class conduction-cooled HTS SMES[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3):1344-1347.
[83] Bhunia U, Akhter J, Nandi C, et al. Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet[J]. Cryogenic, 2014, 63:186-198.
[84] Dai T Z, Tang Y J, Shi J, et al. Design of a 10 MJ superconducting magnetic energy storage magnet[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3):1356-1359.
Outlines

/