Special lssues

Left-handed materials with ferromagnetic medium: A review

  • LI Yang ,
  • LIU Chuanbao ,
  • BAI Yang ,
  • QIAO Lijie ,
  • ZHOU Ji
Expand
  • 1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;
    2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2016-04-11

  Revised date: 2016-04-20

  Online published: 2016-10-21

Abstract

Metamaterials have been a hot issue in the international research community over the past decade, among which the left-handed material (LHM) is the most typical one that possesses simultaneously negative permittivity and permeability and has unique electromagnetic properties. Although the physical nature of the LHM is equivalent to the continuous medium, in fact LHM is made of artificial metal structure and the physical properties are determined by the parameters of the structure rather than the intrinsic property of the material. Utilizing directly the functional materials'intrinsic physical properties which can generate negative electromagnetic parameters so as to obtain the left-handed properties can greatly enrich the physical characteristics of the LHM and jump out of the scope of design of metamaterial, which is also the characteristic research field in the research field of the LHM. There have been many studies on LHM with ferromagnetic medium in recent years. In this article, we will review the progress of LHM with ferromagnetic medium.

Cite this article

LI Yang , LIU Chuanbao , BAI Yang , QIAO Lijie , ZHOU Ji . Left-handed materials with ferromagnetic medium: A review[J]. Science & Technology Review, 2016 , 34(18) : 54 -65 . DOI: 10.3981/j.issn.1000-7857.2016.18.005

References

[1] Veselago V G. The electro dynamics of substance simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514.
[2] Pendry J B. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25):4773-4776.
[3] PendryJB.Magnetismfromconductorsandenhancednonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11):2075-2084.
[4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[5] Tsutaoka T, Nakamura T, Hatakeyama K. Magnetic field effect on the complex permeability spectra in a Ni-Zn ferrite[J]. Journal of Applied Physics, 1997, 82(6):3068-3071.
[6] Tsutaoka T, Kasagi T, Hatakeyama K. Magnetic field effect on the complex permeability for a Mn-Zn ferrite and its composite materials[J]. Journal of the European Ceramic Society, 1999, 19(6):1531-1535.
[7] Pimenov A, Loidl A, Przyslupski P, et al. Negative refraction in ferromagnet-superconductor superlattices[J]. Physical Review Letters, 2005, 95(24):247009.
[8] He Y X, He P, HarrisV G, et al. Role of ferrites in negative index metamaterials[J]. IEEE Transactions on Magnetics, 2006, 42(10):2852-2854.
[9] He Y, He P, Dae Yoon S, et al. Tunable negative index Metamaterial using yttrium iron garnet[J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1):187-191.
[10] Zhao H, Kang L, Zhou J, et al. Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite Metamaterial[J]. Applied Physics Letters, 2008, 93(20):201106.
[11] Zhao H, Zhou J, Zhao Q, etal. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires[J]. Applied Physics Letters, 2007, 91(13):131107.
[12] Xu F, Bai Y, Qiao L, et al. Microwave left-handed composite material made of slim ferrite rods and metallic wires[J]. Chinese Physics B, 2009, 18(4):1653.
[13] Poo Y, Wu R, He G, et al. Experimental verification of a tunable lefthanded material by bias magnetic fields[J]. Applied Physics Letters, 2010, 96(16):161902.
[14] Zhao H, Zhou J, Kang L, et al. Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires[J]. Optics Express, 2009, 17(16):13373-13380.
[15] Xu F, Bai Y, Ai F, et al. Realization and modulation of negative permeability using an array of hexaferrite rods[J]. Journal of Physics D:Applied Physics, 2009, 42(6):065416.
[16] Bi K, Zhou J, Zhao H, et al. Tunable dual-band negative refractive index in ferrite-based metamaterials[J]. Optics Express, 2013, 21(9):10746-10752.
[17] Wang Q, Zeng L, Lei M, et al. Tunable metamaterial band stop filter based on ferromagnetic resonance[J]. AIP Advances, 2015, 5(7):077145.
[18] Bi K, Zhou J, Liu X, et al. Multi-band negative refractive index in ferrite-based metamaterials[J]. Progress In Electromagnetics Research, 2013, 140:457-469.
[19] Wang Q, Bi K, Lei M. Magnetically tunable dual-band transmission through a single subwavelength aperture[J]. Applied Physics Letters, 2015, 106(19):194102.
[20] Bi K, Zhu W, Lei M, et al. Magnetically tunable wideband microwave filter using ferrite-based metamaterials[J]. Applied Physics Letters, 2015, 106(17):173507.
[21] Zou D, Jiang A, Wu R. Ferromagnetic metamaterial with tunable negative index of refraction[J]. Journal of Applied Physics, 2010, 107(1):013507.
[22] Zhao H, Li B, Zhou J, et al. Abnormal refraction of microwave in ferrite/wire metamaterials[J]. Optics Express, 2011, 19(17):15679-15689.
[23] Bi K, Guo Y, Zhou J, et al. Negative and near zero refraction metamaterials based on permanent magnetic ferrites[J]. ScientificReports, 2014, 4:4139.
[24] Gu Y, Wu R, Yang Y, et al. Self-biased magnetic left-handed material[J]. Applied Physics Letters, 2013, 102(23):231914.
[25] Rachford F J, Armstead D N, Harris V G, et al. Simulations of ferritedielectric-wire composite negative index materials[J]. Physical Review Letters, 2007, 99(5):057202.
[26] He P, Gao J, Marinis C T, et al. A microstrip tunable negative refractive index metamaterial and phase shifter[J]. Applied Physics Letters, 2008, 93(19):193505.
[27] Bai Y, Zhou J, SunY, et al. Effect of electromagnetic environment on the dielectric resonance in the ferroelectric-ferromagnetic composite[J], Applied Physics Letters, 2006, 89(11):112907.
[28] Ciomaga C E, Dumitru I, Mitoseriu L, et al. Magnetoelectric ceramic composites with double-resonant permittivity and permeability in GHz range:A route towards isotropic metamaterials[J]. Scripta Materialia, 2010, 62(8):610-612.
[29] Xu F, Bai Y, Qiao L,et al. Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material[J]. Journal of Physics D:Applied Physics, 2009, 42(2):025403.
[30] McCall M W, Lakhtakia A, Weiglhofer W S. The negative index of refraction demystified[J]. European Journal of Physics, 2002, 23(3):353.
[31] Boardman A D, King N, Velasco L. Negative refraction in perspective[J]. Electromagnetics, 2005, 25(5):365-389.
[32] Pimenov A, Loidl A, Gehrke K, et al. Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range[J]. Physical Review Letters, 2007, 98(19):197401.
[33] Yan K, Fan R, Shi Z, et al. Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 a thigh-frequency[J]. Journal of Materials Chemistry C, 2014, 2(6):1028-1033.
[34] Lan C, Bi K, Zhou J, et al. Experimental demonstration of hyperbolic property in conventional material-ferrite[J]. Applied Physics Letters, 2015, 107(21):211112.
[35] Pokrovsky A L, Efros A L. Electrodynamics of metallic photonic crystals and the problem of left-handed materials[J]. Physical Review Letters, 2002, 89(9):093901.
[36] Pokrovsky A L, Efros A L. Pokrovsky and Efros Reply[J]. Physical Review Letters, 2004, 92(11):119401.
[37] Marques R, Smith D R. Comment on "Electrodynamics of metallic photonic crystals and the problem of left-handed materials"[J]. Physical Review Letters, 2004, 92(5):059401.
[38] Bai Y, Xu F, Qiao L. The left-handed property of the composite structure of metallic wires in an anisotropy medium host[J]. Applied Physics Letters, 2009, 94(9):094101.
Outlines

/