Exclusive

Metamaterials to build the future

  • ZHU Yehua
Expand
  • Editorial Department of Science and Technology Review, Beijing 100081, China

Received date: 2016-09-10

  Revised date: 2016-09-21

  Online published: 2016-10-21

Abstract

Metamaterial is a special kind of artificial composite materials or structures. Through orderly design the key physical size of the structure, we can design our own "atoms" to create the special material with unprecedented effective properties that have not yet been found in nature. Metamaterial like left-hand materials and photonic crystal have a wide range of applications in military and civil field. This paper reviewed the research progress and application of metamaterial.

Cite this article

ZHU Yehua . Metamaterials to build the future[J]. Science & Technology Review, 2016 , 34(18) : 14 -26 . DOI: 10.3981/j.issn.1000-7857.2016.18.001

References

[1] 陈曦. 超材料的电磁特性与应用研究[D]. 长沙:国防科学技术大学, 2013. Chen Xi. Research on the electromagnetic characters and applications of metamaterial[D]. Changsha:National University of Defense Technology, 2013.
[2] 张辉. 超常介质的电磁特性及其应用研究[D]. 长沙:国防科技大学, 2009. Zhang Hui. Investigation on matamaterials and its application[D]. Changsha:National University of Defense Technology, 2009.
[3] 徐亚东. 用超材料操控波导中电磁波的传播[D]. 苏州:苏州大学, 2014. Xu Yadong. Manipulating the propagations of electromagnetic waves inside waveguide by employing metamaterials[D]. Suzhou:Suzhou University, 2014.
[4] Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[5] Eleftheriades G V, Iyer A K, Kremer P C. Planar negative refractive index media using periodically L-C loaded transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(12):2702-2712.
[6] Cui T J, Smith D R, Liu R P. Metamaterials:theory, design, and application[M]. New York:Springer, 2010:1-4.
[7] Li J, Chan C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004, 70(5):055602.
[8] Chen H Y, Chan C T, Liu S Y, et al. A simple route to a tunable electromagnetic gateway[J/OL]. New Journal of Physics, 2009, 11[2016-09-24]. http://iopscience.iop.org/1367-2630/11/8/083012.
[9] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782.
[10] Leonhardt U. Optical Conformal Mapping[J]. Science, 2006, 312:1777-1780.
[11] Schurig J J, Mock B J, Justice S A, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(10):977-980.
[12] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature photonics, 2007, 1(4):224-227.
[13] Huang Y, Feng Y, Jiang T. Electromagnetic cloaking by layer structures of homogeneous isotropic materls[J]. Optics express, 2007, 15(18):11133.
[14] Ruan Z C, Yan M, Neff C W, et al. Ideal cylindrical cloak:perfect but sensitive to tiny perturbations[J]. Physical Review Letters, 2007, 99(11):113903.
[15] Yan M, Ruan Z C, Qiu M. Cylindrical invisibility cloak with simplified material parameters is inherently visible[J]. Physical Review E, 2007, 99:233901.
[16] Jiang W X, Cui T J, Yu G X, et al. Arbitrarily elliptical-cylindrical invisible cloaking[J]. Journal of Physics D:Applied Physics, 2008, 41(8):085504.
[17] Li J, Pendry J B. Hiding under the carpet:A new strategy for cloaking[J]. 2008, 101(20):203901.
[18] Valentine J, Li J, Zentgraf T, et al. An optical clock made of dielectrics[J]. Nature Materials, 2009, 8, 568-571.
[19] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912):366-369.
[20] Yu G X, Jiang W X, Cui T J. Invisible slab cloaks via embedded optical transformation[J]. Applied Physics Letters, 2009, 94:041904.
[21] Xu X F, Feng Y J, Hao Y, et al. Infrared carpet cloak designed with uniform silicon grating structure[J]. Applied Physics Letters, 2009, 95(18):184102.
[22] Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J/OL]. Nature Communications, 2010, 1[2016-09-24]. http://www.nature.com/ncomms/journal/v1/n3/full/ncomms1023.html. DOI:10.1038/ncomms1023.
[23] Lai Y, Chen H Y, Zhang Z Q, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[J]. Physical Review Letters, 2009, 102(9):093901.
[24] Han T C, Tang X H, Xiao F. External cloak with homogeneous material[J]. Journal of Physics D:Applied Physics, 2009, 42(23):235403.
[25] Yang C F, Yang J, et al. An external clock with arbitrary cross section based on complementary medium and coordinate transformation[J]. Optics Express, 2011, 19(2):1147.
[26] 杨成福. 电磁坐标变换及其应用研究[D]. 昆明:云南大学, 2010. Yang Chengfu. Application research of electromagnetic coordinate transformation[D]. Kunming:Yunnan University, 2010.
[27] Han T C, Qiu C W, Tang X H. Distributed external cloak without embedded antiobjects[J]. Optics Express, 2010, 35(15):2642.
[28] 许卫锴, 卢少微, 马克明, 等. 超材料在隐身领域的研究及应用进展[J]. 功能材料, 2014, 45(4):4017-4026. Xu Weikai, Lu Shaowei, Ma Keming, et al. Research and application progress in the field of stealth based on metamaetrials[J]. Journal of Functional Materials, 2014, 45(4):4017-4026.
[29] 王金金, 左翔, 赵选科, 等. 隐身斗篷概述及其光学理论研究[J]. 信息技术, 2015, 44(5):139-142. Wang Jinjin, Zuo Xiang, Zhao Xuanke, et al. Overview of electromagnetic invisibility cloak[J]. Machine Building & Automation, 2015, 44(5):139-142.
[30] 来自未来的"魔法材料":隐身超材料[EB/OL]. (2015-04-07). http://www.360doc.com/content/15/0407/20/22754003_461371947.shtml.
[31] 中国新智能蒙皮技术或已实用比F-22更先进[EB/OL]. (2015-11-17). http://war.163.com/15/1117/08/B8K0L0KL00014OVF.html.
[32] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7):119-128. Yu Xianglong, Zhou Ji. Research advance in smart matamaterials[J]. Journal of Materials Engineering, 2016, 44(7):119-128.
[33] 刘若鹏, 季春霖, 赵治亚. 超材料:重新塑造与重新思考[J]. 工程, 2015, 1(2):179-184.
[34] 超材料雷达:让智能车辆拥有一双"好眼睛"[EB/OL]. (2015-07-08). http://hk.stock.hexun.com/2015-07-08/177381833.html.
[35] 太赫兹超材料助力车联网智能汽车有望成为"变形金刚"[EB/OL]. (2015-04-14). http://finance.jrj.com.cn/2015/04/14141619097646.shtml.
[36] 新奇纳米超材料助推太阳能电池革命[EB/OL]. (2016-04-20). http://tech.163.com/16/0420/09/BL37958400094O5H.html.
[37] 中国科学家首次制造人造电磁黑洞[EB/OL]. (2013-12-16). http://tech.ifeng.com/discovery/detail_2013_12/16/32155457_0.shtml.
[38] Ramakrishna A S, Pendry J B. Imaging the near field[J]. Journal of Modern Optics. 2003, 50(9):1419-1430.
[39] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[40] Xiong Y, Liu Z, Sun C, et al. Two-dimensional imaging by far-field superlens at visible wavelengths[J]. Nano Letters. 2007, 7(11):3360-3365.
[41] Taubner T, Korobkin D, Urzhumov Y, et al. Near-field microscopy through a SiC superlens[J]. Science, 2006, 313(5793):1595.
[42] Fan W, Yan B, Wang Z B, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J/OL]. Science Advances, 2016, 2(8)[2016-09-24]. http://advances.sciencemag.org/content/2/8/e1600901. Doi:10.1126/sciadv.1600901.
[43] Ziolkowski R W, Kipple A D, Application of double negative materials to increase the power radiated by electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10), 2626-2640.
[44] Ntaikos D K, Bourgis N K, Yioultsis T V. Metamaterial-Based electrically small multiband planar monopole antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:963-966
[45] Lizuka H, Hall P. A Left-Handed Dipole Concept[C]. 2006 IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, New York, 2006, 396-399.
[46] Andrea A, Filiberto B, Nader E, et al. Theory and simulations of a conformal omni-directional subwavelengh metamaterial leaky-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(6), 1698-1708.
[47] Justin E, Viktor P A, Ildar S, et al. Nonlocal effects in effective-medium response of layered metamaterials[J/OL]. Applied Physics Letters, 2007, 90[2016-09-24]. http://dx.doi.org/10.1063/1.2737935. DOI:10.1063/1.2737935.
[48] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters. 2002, 89(21):213902.
[49] Zhou H, Pei Z, Qu S, et al. A novel high-directivity microstrip patch antenna based on Zero-index metamaterial[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:538-541.
[50] Zhou B, Cui T J. Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:326-329.
[51] Wu C Y, Yeh S H, Lu T H. Planar high gain antenna for 5.8-GHz WiMAX operation[C]//IEEE Region 10 Conference, 1-3.
[52] 刘佳. 超材料在光学传输方面的应用研究[D]. 南京航空航天大学, 2014. Liu Jia. Application of matamaterials in optical transmission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014.
Outlines

/